Control Contraction Metrics and Universal Stabilizability

In this paper we introduce the concept of universal stabilizability: the condition that every solution of a nonlinear system can be globally stabilized. We give sufficient conditions in terms of the existence of a control contraction metric, which can be found by solving a pointwise linear matrix inequality. Extensions to approximate optimal control are straightforward. The conditions we give are necessary and sufficient for linear systems and certain classes of nonlinear systems, and have interesting connections to the theory of control Lyapunov functions.

[1]  A. Rantzer A dual to Lyapunov's stability theorem , 2001 .

[2]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[3]  Emmanuel Trélat,et al.  Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations , 2007, SIAM J. Control. Optim..

[4]  J. Cloutier State-dependent Riccati equation techniques: an overview , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[5]  Ian R. Manchester,et al.  Transverse contraction criteria for existence, stability, and robustness of a limit cycle , 2012, 52nd IEEE Conference on Decision and Control.

[6]  João Pedro Hespanha,et al.  Linear Systems Theory , 2009 .

[7]  P. Hartman,et al.  On global asymptotic stability of solutions of differential equations. , 1962 .

[8]  Ian R. Manchester,et al.  LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification , 2010, Int. J. Robotics Res..

[9]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[10]  D. C. Lewis Metric Properties of Differential Equations , 1949 .

[11]  P. Hartman On Stability in the Large for Systems of Ordinary Differential Equations , 1961, Canadian Journal of Mathematics.

[12]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[13]  V. Perrier,et al.  Submitted to: 2007 Industrial Simulation Conference SIMULATION-BASED OPTIMIZATION OF AGENT SCHEDULING IN MULTISKILL CALL CENTERS , 2007 .

[14]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[15]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[16]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[17]  J. Doyle,et al.  XW Control of Nonlinear Systems : A Convex Characterization , 1995 .

[18]  F. Mémoli,et al.  Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces: 730 , 2001 .

[19]  Jean-Jacques E. Slotine,et al.  Contraction analysis: a practical approach to nonlinear control applications , 1998, Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104).

[20]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[21]  A. Schaft,et al.  L2-Gain and Passivity in Nonlinear Control , 1999 .

[22]  Rodolphe Sepulchre,et al.  A Differential Lyapunov Framework for Contraction Analysis , 2012, IEEE Transactions on Automatic Control.

[23]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[24]  F. Uhlig A recurring theorem about pairs of quadratic forms and extensions: a survey , 1979 .

[25]  I. Petersen,et al.  Robust Control Design Using H-? Methods , 2012 .

[26]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[27]  Prashant G. Mehta,et al.  Nonlinear stabilization via control-Lyapunov measure , 2007, 2007 46th IEEE Conference on Decision and Control.

[28]  Tor Arne Johansen,et al.  Computation of Lyapunov functions for smooth nonlinear systems using convex optimization , 2000, Autom..

[29]  J. Doyle,et al.  𝓗∞ Control of Nonlinear Systems: a Convex Characterization , 1995, IEEE Trans. Autom. Control..

[30]  Hans Joachim Ferreau,et al.  Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation , 2009 .

[31]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[32]  Pablo A. Parrilo,et al.  Nonlinear control synthesis by convex optimization , 2004, IEEE Transactions on Automatic Control.

[33]  Murat Arcak,et al.  Constructive nonlinear control: a historical perspective , 2001, Autom..

[34]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[35]  Prashant G. Mehta,et al.  Nonlinear Stabilization via Control Lyapunov Measure , 2010, IEEE Transactions on Automatic Control.

[36]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[37]  D. Bao,et al.  An Introduction to Riemann-Finsler Geometry , 2000 .