Alloy design for mechanical properties: Conquering the length scales

<jats:p><jats:fig position="anchor"><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" orientation="portrait" mime-subtype="jpeg" mimetype="image" position="float" xlink:type="simple" xlink:href="S0883769419000678_figAb" /></jats:fig></jats:p>

[1]  I. Beyerlein,et al.  Strength and ductility with {101̄1} — {101̄2} double twinning in a magnesium alloy , 2016, Nature Communications.

[2]  van der Erik Giessen,et al.  Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics , 2002 .

[3]  Minsheng Huang,et al.  Modeling dislocation cutting the precipitate in nickel-based single crystal superalloy via the discrete dislocation dynamics with SISF dissociation scheme , 2013 .

[4]  Somnath Ghosh,et al.  Crystal plasticity finite element modeling of discrete twin evolution in polycrystalline magnesium , 2017 .

[5]  J. Llorca,et al.  Precipitation during high temperature aging of Al−Cu alloys: A multiscale analysis based on first principles calculations , 2019, Acta Materialia.

[6]  B. Appolaire,et al.  Coupling the Phase Field Method for diffusive transformations with dislocation density-based crystal plasticity: Application to Ni-based superalloys , 2016 .

[7]  Somnath Ghosh,et al.  Hierarchical crystal plasticity FE model for nickel-based superalloys: Sub-grain microstructures to polycrystalline aggregates , 2015 .

[8]  M. K. Kulekci Magnesium and its alloys applications in automotive industry , 2008 .

[9]  I. Beyerlein,et al.  Effect of dislocation density-twin interactions on twin growth in AZ31 as revealed by explicit crystal plasticity finite element modeling , 2017 .

[10]  I. Beyerlein,et al.  Statistical dislocation activation from grain boundaries and its role in the plastic anisotropy of nanotwinned copper , 2016 .

[11]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[12]  J. Segurado,et al.  Discrete dislocation dynamics simulations of dislocation-θ′ precipitate interaction in Al-Cu alloys , 2018, Journal of the Mechanics and Physics of Solids.

[13]  Alexander Hartmaier,et al.  Influence of misfit stresses on dislocation glide in single crystal superalloys: A three-dimensional discrete dislocation dynamics study , 2015 .

[14]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[15]  Fan Yang,et al.  Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime , 2008 .

[16]  I. Beyerlein,et al.  Role of alloying elements on twin growth and twin transmission in magnesium alloys , 2017 .

[17]  M. Mohammadi,et al.  An elasto-plastic constitutive model for evolving asymmetric/anisotropic hardening behavior of AZ31B and ZEK100 magnesium alloy sheets considering monotonic and reverse loading paths , 2015 .

[18]  J. Bohlen,et al.  Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets , 2010 .

[19]  A. Hussein,et al.  Advances in Discrete Dislocation Dynamics Modeling of Size-Affected Plasticity , 2016 .

[20]  Yunzhi Wang,et al.  Phase field modeling of defects and deformation , 2010 .

[21]  S. Agnew,et al.  Modeling twinning and detwinning behavior of Mg alloy ZK60A during monotonic and cyclic loading , 2015 .

[22]  Somnath Ghosh,et al.  Microstructure and Property-Based Statistically Equivalent Representative Volume Elements for Polycrystalline Ni-Based Superalloys Containing Annealing Twins , 2018, Metallurgical and Materials Transactions A.

[23]  Nasr M. Ghoniem,et al.  Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation , 2000 .

[24]  M. Mills,et al.  Segregation of alloying elements to planar faults in γ'-Ni3Al , 2018 .

[25]  A. Hunter,et al.  Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Y. Estrin,et al.  Twinning-induced plasticity (TWIP) steels , 2018 .

[27]  Somnath Ghosh,et al.  Microstructure and property based statistically equivalent RVEs for intragranular γ−γ' microstructures of Ni-based superalloys , 2018, Acta Materialia.

[28]  S. Sandfeld,et al.  A dislocation dynamics-assisted phase field model for Nickel-based superalloys: The role of initial dislocation density and external stress during creep , 2017 .

[29]  Liguo Zhao,et al.  Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys , 2012 .

[30]  T. Bieler,et al.  Crack opening due to deformation twin shear at grain boundaries in near-γ TiAl , 2007 .

[31]  I. Beyerlein,et al.  Effect of local stress fields on twin characteristics in HCP metals , 2016 .

[32]  Yunzhi Wang,et al.  Growth behavior of γ'/γ'' coprecipitates in Ni-Base superalloys , 2019, Acta Materialia.

[33]  Dierk Raabe,et al.  The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys , 2018 .

[34]  W. Reimers,et al.  Analysis of the Deformation Behavior of Magnesium-Rare Earth Alloys Mg-2 pct Mn-1 pct Rare Earth and Mg-5 pct Y-4 pct Rare Earth by In Situ Energy-Dispersive X-ray Synchrotron Diffraction and Elasto-Plastic Self-Consistent Modeling , 2014, Metallurgical and Materials Transactions A.

[35]  Yunzhi Wang,et al.  Microstructural design for advanced light metals , 2019, MRS Bulletin.

[36]  P. Zhou,et al.  Influence of Tension-Compression Asymmetry on the Mechanical Behavior of AZ31B Magnesium Alloy Sheets in Bending , 2016, Journal of Materials Engineering and Performance.

[37]  Yunping Li,et al.  Suzuki segregation in Co–Ni-based superalloy at 973 K: An experimental and computational study by phase-field simulation , 2012 .

[38]  Tianmo Liu,et al.  Reducing the tension–compression yield asymmetry in a hot-rolled Mg–3Al–1Zn alloy via multidirectional pre-compression , 2013 .

[39]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[40]  Christopher R. Weinberger,et al.  Multiscale Materials Modeling for Nanomechanics , 2016 .

[41]  Dongwon Shin,et al.  Computational Materials System Design , 2018 .

[42]  Multiscale modelling of the morphology and spatial distribution of θ′ precipitates in Al-Cu alloys , 2017, 1702.05020.

[43]  S. Li,et al.  The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy , 2008 .

[44]  M. Zaiser,et al.  A continuum approach to combined γ/γ′ evolution and dislocation plasticity in Nickel-based superalloys , 2017 .

[45]  M. Demkowicz,et al.  Defect-interface interactions , 2015 .

[46]  Hussein M. Zbib,et al.  A multiscale model of plasticity , 2002 .

[47]  A. Luo Recent magnesium alloy development for elevated temperature applications , 2004 .

[48]  Angus J. Wilkinson,et al.  Assessment of residual stress fields at deformation twin tips and the surrounding environments , 2016 .

[49]  A. Hunter,et al.  Theoretical and computational comparison of models for dislocation dissociation and stacking fault/core formation in fcc crystals , 2016 .

[50]  A. Hussein,et al.  The strength and dislocation microstructure evolution in superalloy microcrystals , 2017 .

[51]  Sidney Yip,et al.  Handbook of Materials Modeling , 2005 .

[52]  Nack J. Kim,et al.  Current issues in magnesium sheet alloys: Where do we go from here? , 2014 .

[53]  Ladislas P. Kubin,et al.  Dislocation Microstructures and Plastic Flow: A 3D Simulation , 1992 .

[54]  I. Beyerlein,et al.  A measure of plastic anisotropy for hexagonal close packed metals: Application to alloying effects on the formability of Mg , 2017 .

[55]  M. Yoo Slip, twinning, and fracture in hexagonal close-packed metals , 1981 .

[56]  N. Kim Critical Assessment 6: Magnesium sheet alloys: viable alternatives to steels? , 2014 .

[57]  Lei Yang,et al.  Enhancing strength and thermal stability of TWIP steels with a heterogeneous structure , 2018 .

[58]  J. Segurado,et al.  An atomistic investigation of the interaction of dislocations with Guinier-Preston zones in Al-Cu alloys , 2018, Acta Materialia.

[59]  W. Hume-rothery,et al.  On the Theory of Super-Lattice Structures in Alloys , 1935 .

[60]  I. Beyerlein,et al.  Growth Twins and Deformation Twins in Metals , 2014 .

[61]  U. Ramamurty,et al.  Tension–compression asymmetry in an extruded Mg alloy AM30: Temperature and strain rate effects , 2013 .

[62]  J. Llorca,et al.  A multidisciplinary approach to study precipitation kinetics and hardening in an Al-4Cu (wt. %) alloy , 2018, Journal of Alloys and Compounds.

[63]  L. Kovarik,et al.  Segregation at stacking faults within the γ′ phase of two Ni-base superalloys following intermediate temperature creep , 2015 .

[64]  D. Raabe,et al.  Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids , 2017 .