Enumerating Prime Implicants of Propositional Formulae in Conjunctive Normal Form

In this paper, a new approach for enumerating the set prime implicants (PI) of a Boolean formula in conjunctive normal form (CNF) is proposed. It is based on an encoding of the input formula as a new one whose models correspond to the set of prime implicants of the original theory. This first PI enumeration approach is then enhanced by an original use of the boolean functions or gates usually involved in many CNF instances encoding real-world problems. Experimental evaluation on several classes of CNF instances shows the feasibility of our proposed framework.

[1]  Jarrod A. Roy,et al.  Restoring Circuit Structure from SAT Instances , 2004 .

[2]  Olivier Coudert,et al.  Fault Tree Analysis: 1020 Prime Implicants and Beyond , 1993 .

[3]  Bertrand Mazure,et al.  Computing prime implicants , 2013, 2013 Formal Methods in Computer-Aided Design.

[4]  Lakhdar Sais,et al.  Automatic Extraction of Functional Dependencies , 2004, SAT.

[5]  Nripendra N. Biswas,et al.  Minimization of Boolean Functions , 1971, IEEE Transactions on Computers.

[6]  Lakhdar Sais,et al.  Circuit Based Encoding of CNF Formula , 2007, SAT.

[7]  E. McCluskey Minimization of Boolean functions , 1956 .

[8]  Sharad Malik,et al.  Extracting Logic Circuit Structure from Conjunctive Normal Form Descriptions , 2007, 20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07).

[9]  Pierre Marquis,et al.  A Knowledge Compilation Map , 2002, J. Artif. Intell. Res..

[10]  Marco Cadoli,et al.  A Survey on Knowledge Compilation , 1997, AI Commun..

[11]  Olivier Coudert,et al.  Fault tree analysis: 10/sup 20/ prime implicants and beyond , 1993, Annual Reliability and Maintainability Symposium 1993 Proceedings.

[12]  W. Quine On Cores and Prime Implicants of Truth Functions , 1959 .

[13]  Matthew L. Ginsberg A Circumscriptive Theorem Prover , 1989, Artif. Intell..

[14]  Raymond Reiter,et al.  Characterizing Diagnoses , 1990, AAAI.

[15]  Lakhdar Sais,et al.  Tractable Cover Compilations , 1997, IJCAI.

[16]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[17]  A. Rauzy,et al.  Exact and truncated computations of prime implicants of coherent and non-coherent fault trees within Aralia , 1997 .

[18]  Nicolas Barnier,et al.  Solving the Kirkman's schoolgirl problem in a few seconds , 2002 .

[19]  Vasco M. Manquinho,et al.  Prime implicant computation using satisfiability algorithms , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[20]  Luigi Palopoli,et al.  Algorithms for Selective Enumeration of Prime Implicants , 1999, Artif. Intell..

[21]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[22]  João Silva On Computing Minimum Size Prime Implicants , 1997 .

[23]  Clara Pizzuti Computing prime implicants by integer programming , 1996, Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence.

[24]  Vladimir Gurvich,et al.  On Generating the Irredundant Conjunctive and Disjunctive Normal Forms of Monotone Boolean Functions , 1999, Discret. Appl. Math..

[25]  Simon de Givry,et al.  2006 and 2007 Max-SAT Evaluations: Contributed Instances , 2008, J. Satisf. Boolean Model. Comput..

[26]  Alvaro del Val Tractable Databases: How to Make Propositional Unit Resolution Complete Through Compilation , 1994, KR.

[27]  Willard Van Orman Quine,et al.  The Problem of Simplifying Truth Functions , 1952 .

[28]  Joao Marques-Silva,et al.  Theory and Applications of Satisfiability Testing - SAT 2007, 10th International Conference, Lisbon, Portugal, May 28-31, 2007, Proceedings , 2007, SAT.

[29]  Leen Stougie,et al.  Algorithms and complexity of enumerating minimal precursor sets in genome-wide metabolic networks , 2012, Bioinform..

[30]  Peter L. Hammer,et al.  Boolean Functions , 2013, Discrete Applied Mathematics.

[31]  Joao Marques-Silva,et al.  MaxSAT-Based MCS Enumeration , 2012, Haifa Verification Conference.

[32]  Vasco M. Manquinho,et al.  Models and Algorithms for Computing Minimum-Size Prime Implicants , 2008 .

[33]  Karem A. Sakallah,et al.  Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints , 2007, Journal of Automated Reasoning.

[34]  Mikolás Janota,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence On Computing Minimal Correction Subsets , 2022 .

[35]  Marija Slavkovik,et al.  A judgment set similarity measure based on prime implicants , 2014, AAMAS.

[37]  Los Angeles RELIABILITY and MAINTAINABILITY Symposium , 2000 .

[38]  Kavita Ravi,et al.  Minimal Assignments for Bounded Model Checking , 2004, TACAS.

[39]  Pierre L. Tison,et al.  Generalization of Consensus Theory and Application to the Minimization of Boolean Functions , 1967, IEEE Trans. Electron. Comput..

[40]  Robert Schrag,et al.  Compilation for Critically Constrained Knowledge Bases , 1996, AAAI/IAAI, Vol. 1.

[41]  Lakhdar Sais,et al.  Recovering and Exploiting Structural Knowledge from CNF Formulas , 2002, CP.