Molecular Composition and Ultrastructure of the Caveolar Coat Complex

The single protein caveolar coat complex comprises only cavins and caveolins, coats the caveolar bulb, and is probably responsible for creating caveolae.

[1]  C. G. Hansen,et al.  Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae , 2013, Nature Communications.

[2]  G. Whiteley,et al.  Characterization of the Molecular Architecture of Human Caveolin-3 and Interaction with the Skeletal Muscle Ryanodine Receptor , 2012, The Journal of Biological Chemistry.

[3]  R. Tsien,et al.  A Structural Basis for the Assembly and Functions of a Viral Polymer that Inactivates Multiple Tumor Suppressors , 2012, Cell.

[4]  Sébastien Phan,et al.  TxBR montage reconstruction for large field electron tomography. , 2012, Journal of structural biology.

[5]  Kai Simons,et al.  Constitutive Formation of Caveolae in a Bacterium , 2012, Cell.

[6]  A. Helenius,et al.  Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin , 2012, The EMBO journal.

[7]  O. Daumke,et al.  EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization , 2012, Molecular biology of the cell.

[8]  Richard G. W. Anderson,et al.  Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. , 2012, Cell metabolism.

[9]  C. G. Hansen,et al.  Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis , 2011, Journal of Cell Science.

[10]  P. Pilch,et al.  Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes , 2011, Trends in Endocrinology & Metabolism.

[11]  S. Suetsugu,et al.  Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting , 2011, Journal of Cell Science.

[12]  A. Malik,et al.  Caveolin-1–eNOS signaling promotes p190RhoGAP-A nitration and endothelial permeability , 2011, The Journal of cell biology.

[13]  Ericka B. Ramko,et al.  A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, Tissues, and Organisms , 2011, PLoS biology.

[14]  Robert G. Parton,et al.  Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae , 2011, Cell.

[15]  C. G. Hansen,et al.  Exploring the caves: cavins, caveolins and caveolae. , 2010, Trends in cell biology.

[16]  A. Helenius,et al.  Biogenesis of Caveolae: Stepwise Assembly of Large Caveolin and Cavin Complexes , 2010, Traffic.

[17]  A. Malik,et al.  Regulation of endothelial permeability via paracellular and transcellular transport pathways. , 2010, Annual review of physiology.

[18]  M. N. Lebbink,et al.  Spiral Coating of the Endothelial Caveolar Membranes as Revealed by Electron Tomography and Template Matching , 2010, Traffic.

[19]  G. Hause,et al.  The shape of caveolae is omega-like after glutaraldehyde fixation and cup-like after cryofixation , 2010, Histochemistry and Cell Biology.

[20]  I. Nonaka,et al.  Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. , 2009, The Journal of clinical investigation.

[21]  S. Gygi,et al.  MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes , 2009, The Journal of cell biology.

[22]  C. G. Hansen,et al.  SDPR induces membrane curvature and functions in the formation of caveolae , 2009, Nature Cell Biology.

[23]  Richard G. W. Anderson,et al.  SRBC/cavin‐3 is a caveolin adapter protein that regulates caveolae function , 2009, The EMBO journal.

[24]  K. H. Albrecht,et al.  Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. , 2008, Cell metabolism.

[25]  H. Matsubara,et al.  MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis. , 2008, American journal of physiology. Cell physiology.

[26]  Tobias Richter,et al.  High‐Resolution 3D Quantitative Analysis of Caveolar Ultrastructure and Caveola–Cytoskeleton Interactions , 2008, Traffic.

[27]  S. O’Rahilly,et al.  Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. , 2008, The Journal of clinical endocrinology and metabolism.

[28]  P. Pilch,et al.  A Critical Role of Cavin (Polymerase I and Transcript Release Factor) in Caveolae Formation and Organization* , 2008, Journal of Biological Chemistry.

[29]  M. Kirkham,et al.  PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function , 2008, Cell.

[30]  M. Frick,et al.  Coassembly of Flotillins Induces Formation of Membrane Microdomains, Membrane Curvature, and Vesicle Budding , 2007, Current Biology.

[31]  R. Stan,et al.  Structure of caveolae. , 2005, Biochimica et biophysica acta.

[32]  P. Roepstorff,et al.  Identification of a major protein on the cytosolic face of caveolae. , 2005, Biochimica et biophysica acta.

[33]  Lucas Pelkmans,et al.  Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae , 2005, Nature.

[34]  M. Kirkham,et al.  Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles , 2005, The Journal of cell biology.

[35]  M. Westermann,et al.  Belt-like localisation of caveolin in deep caveolae and its re-distribution after cholesterol depletion , 2005, Histochemistry and Cell Biology.

[36]  P. Strålfors,et al.  Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. , 2004, The Biochemical journal.

[37]  A. Ostermeyer,et al.  Conformational defects slow Golgi exit, block oligomerization, and reduce raft affinity of caveolin-1 mutant proteins. , 2004, Molecular biology of the cell.

[38]  P. Strålfors,et al.  Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. , 2003, Molecular biology of the cell.

[39]  S. Woodman,et al.  Microvascular Hyperpermeability in Caveolin-1 (−/−) Knock-out Mice , 2002, The Journal of Biological Chemistry.

[40]  David S. Park,et al.  Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype. , 2002, The American journal of pathology.

[41]  G. Christ,et al.  Caveolin-2-Deficient Mice Show Evidence of Severe Pulmonary Dysfunction without Disruption of Caveolae , 2002, Molecular and Cellular Biology.

[42]  David S. Park,et al.  Caveolin-1-deficient Mice Are Lean, Resistant to Diet-induced Obesity, and Show Hypertriglyceridemia with Adipocyte Abnormalities* , 2002, The Journal of Biological Chemistry.

[43]  G. Christ,et al.  Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. , 2001, The Journal of biological chemistry.

[44]  M. Drab,et al.  Loss of Caveolae, Vascular Dysfunction, and Pulmonary Defects in Caveolin-1 Gene-Disrupted Mice , 2001, Science.

[45]  J. Engelman,et al.  Caveolin-3 Null Mice Show a Loss of Caveolae, Changes in the Microdomain Distribution of the Dystrophin-Glycoprotein Complex, and T-tubule Abnormalities* , 2001, The Journal of Biological Chemistry.

[46]  C. Peschle,et al.  Expression of Caveolin-1 Is Required for the Transport of Caveolin-2 to the Plasma Membrane , 1999, The Journal of Biological Chemistry.

[47]  B. Berger,et al.  MultiCoil: A program for predicting two‐and three‐stranded coiled coils , 1997, Protein science : a publication of the Protein Society.

[48]  D. Predescu,et al.  Immunoisolation and partial characterization of endothelial plasmalemmal vesicles (caveolae). , 1997, Molecular biology of the cell.

[49]  D. Dietzen,et al.  Oligomerization of VIP21‐caveolin in vitro is stabilized by long chain fatty acylation or cholesterol , 1996, FEBS letters.

[50]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[51]  M. Lisanti,et al.  Oligomeric structure of caveolin: implications for caveolae membrane organization. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[52]  F. Vogel,et al.  VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. , 1995, Molecular biology of the cell.

[53]  R. Parton,et al.  Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. , 1994, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[54]  Richard G. W. Anderson,et al.  Caveolin, a protein component of caveolae membrane coats , 1992, Cell.

[55]  G. Palade,et al.  Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure , 1985, The Journal of cell biology.

[56]  E. Yamada THE FINE STRUCTURE OF THE GALL BLADDER EPITHELIUM OF THE MOUSE , 1955, The Journal of biophysical and biochemical cytology.