A Robust Thermal Infrared Vehicle and Pedestrian Detection Method in Complex Scenes

In complex scenes, it is a huge challenge to accurately detect motion-blurred, tiny, and dense objects in the thermal infrared images. To solve this problem, robust thermal infrared vehicle and pedestrian detection method is proposed in this paper. An important weight parameter β is first proposed to reconstruct the loss function of the feature selective anchor-free (FSAF) module in its online feature selection process, and the FSAF module is optimized to enhance the detection performance of motion-blurred objects. The proposal of parameter β provides an effective solution to the challenge of motion-blurred object detection. Then, the optimized anchor-free branches of the FSAF module are plugged into the YOLOv3 single-shot detector and work jointly with the anchor-based branches of the YOLOv3 detector in both training and inference, which efficiently improves the detection precision of the detector for tiny and dense objects. Experimental results show that the method proposed is superior to other typical thermal infrared vehicle and pedestrian detection algorithms due to 72.2% mean average precision (mAP).

[1]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[2]  Ali Farhadi,et al.  YOLO9000: Better, Faster, Stronger , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Xunxun Zhang,et al.  Vehicle Detection in the Aerial Infrared Images via an Improved Yolov3 Network , 2019, 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP).

[4]  Luc Van Gool,et al.  Efficient Non-Maximum Suppression , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[5]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[6]  G. Wanielik,et al.  Shape and motion-based pedestrian detection in infrared images: a multi sensor approach , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[7]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Wei Liu,et al.  DSSD : Deconvolutional Single Shot Detector , 2017, ArXiv.

[9]  Р Ю Чуйков,et al.  Обнаружение транспортных средств на изображениях загородных шоссе на основе метода Single shot multibox Detector , 2017 .

[10]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Ramakant Nevatia,et al.  Pedestrian Detection in Infrared Images based on Local Shape Features , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[13]  A. Broggi,et al.  Pedestrian Detection using Infrared images and Histograms of Oriented Gradients , 2006, 2006 IEEE Intelligent Vehicles Symposium.

[14]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[15]  Massimo Bertozzi,et al.  Pedestrian detection for driver assistance using multiresolution infrared vision , 2004, IEEE Transactions on Vehicular Technology.

[16]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Ali Farhadi,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.

[19]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[20]  Larry S. Davis,et al.  Soft-NMS — Improving Object Detection with One Line of Code , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[21]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[22]  Marios Savvides,et al.  Feature Selective Anchor-Free Module for Single-Shot Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Jiebo Luo,et al.  DOTA: A Large-Scale Dataset for Object Detection in Aerial Images , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[24]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[25]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[28]  Yuning Jiang,et al.  UnitBox: An Advanced Object Detection Network , 2016, ACM Multimedia.

[29]  Zhaohui Zheng,et al.  Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression , 2019, AAAI.

[30]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[31]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[32]  Xin Li,et al.  Pedestrian detection and tracking in infrared imagery using shape and appearance , 2007, Comput. Vis. Image Underst..