Journal of Graph Algorithms and Applications a Survey of the Algorithmic Properties of Simplicial, Upper Bound and Middle Graphs

Three classes of graphs, simplicial, upper bound, and middle graphs, have been known for some time, but many of their algorithmic properties have not been published. The definitions for these graph classes are reviewed, and their relationships with other common graph classes (especially line and perfect graphs) are presented. Efficient algorithmsare referenced or outlined to recognize each class of graphs. Finally, for each class of graphs and most of the common parameters of graphs, either an algorithm or an NP-complete result is presented, or it is referenced in the literature.

[1]  Frank Harary,et al.  Graph Theory , 2016 .

[2]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[3]  Alan A. Bertossi,et al.  The Edge Hamiltonian Path Problem is NP-Complete , 1981, Inf. Process. Lett..

[4]  Gary Chartrand,et al.  Total Graphs and Traversability , 1966 .

[5]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[6]  Michael C. Loui,et al.  The general maximum matching algorithm of micali and vazirani , 1988, Algorithmica.

[7]  Ronald D. Dutton,et al.  On clique covers and independence numbers of graphs , 1983, Discret. Math..

[8]  Klaus Jansen,et al.  On the Complexity of the Maximum Cut Problem , 1994, Nord. J. Comput..

[9]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[10]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[11]  E. Cockayne,et al.  Properties of Hereditary Hypergraphs and Middle Graphs , 1978, Canadian Mathematical Bulletin.

[12]  Takashi Hamada,et al.  Traversability and connectivity of the middle graph of a graph , 1976, Discret. Math..

[13]  R. May Food webs. , 1983, Science.

[14]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[15]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[16]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[17]  Lutz Volkmann,et al.  Simplicial Graphs and Relationships to Different Graph Invariants , 1997, Ars Comb..

[18]  Fred S. Roberts,et al.  Food webs, competition graphs, and the boxicity of ecological phase space , 1978 .

[19]  M. Plummer Some covering concepts in graphs , 1970 .

[20]  Mieczysław Borowiecki A characterization of middle graphs and a matroid associated with middle graphs of hypergraphs , 1983 .

[21]  Leizhen Cai,et al.  NP-completeness of edge-colouring some restricted graphs , 1991, Discret. Appl. Math..

[22]  M. Plummer WELL-COVERED GRAPHS: A SURVEY , 1993 .

[23]  Alice A. McRae Generalizing NP-completeness proofs for bipartite graphs and chordal graphs , 1995 .

[24]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[25]  James D. Currie,et al.  A characterization of fractionally well-covered graphs , 1991 .

[26]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[27]  Robin J. Wilson,et al.  Edge-colorings of graphs — A survey , 1978 .

[28]  Philippe G. H. Lehot An Optimal Algorithm to Detect a Line Graph and Output Its Root Graph , 1974, JACM.

[29]  Maciej M. Syslo,et al.  An algorithm to recognize a middle graph , 1984, Discret. Appl. Math..

[30]  R. Z. Norman,et al.  An algorithm for a minimum cover of a graph , 1959 .

[31]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[32]  Martin Charles Golumbic,et al.  Trivially perfect graphs , 1978, Discret. Math..

[33]  Gerd Fricke,et al.  Classes of Graphs for Which Upper Fractional Domination Equals Independence, Upper Domination, and upper Irredundance , 1994, Discret. Appl. Math..

[34]  Erich Prisner,et al.  Well covered simplicial, chordal, and circular arc graphs , 1996 .

[35]  Joseph Douglas Horton,et al.  Minimum Edge Dominating Sets , 1993, SIAM J. Discret. Math..

[36]  D. König Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .

[37]  Erich Prisner,et al.  Well covered simplicial, chordal, and circular arc graphs , 1996, J. Graph Theory.

[38]  Claudio Arbib,et al.  A Polynomial Characterization of Some Graph Partitioning Problems , 1988, Inf. Process. Lett..

[39]  Nick Roussopoulos,et al.  A MAX{m, n} Algorithm for Determining the Graph H from Its Line Graph C , 1973, Inf. Process. Lett..