Robust Visual Tracking Using Flexible Structured Sparse Representation

In this work, we propose a robust and flexible appearance model based on the structured sparse representation framework. In our method, we model the complex nonlinear appearance manifold and the occlusion as a sparse linear combination of structured union of subspaces in a basis library, which consists of multiple incremental learned target subspaces and a partitioned occlusion template set. In order to enhance the discriminative power of the model, a number of clustered background subspaces are also added into the basis library and updated during tracking. With the Block Orthogonal Matching Pursuit (BOMP) algorithm, we show that the new flexible structured sparse representation based appearance model facilitates the tracking performance compared with the prototype structured sparse representation model and other state of the art tracking algorithms.

[1]  Bir Bhanu,et al.  Dynamic Bayesian Networks for Vehicle Classification in Video , 2012, IEEE Transactions on Industrial Informatics.

[2]  Baochang Zhang,et al.  Visual object tracking via sample-based Adaptive Sparse Representation (AdaSR) , 2011, Pattern Recognit..

[3]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Dorin Comaniciu,et al.  Kernel-BasedObject Tracking , 2002 .

[5]  Youfu Li,et al.  Structured compressive sensing for robust and fast visual tracking , 2012, 2012 IEEE Sensors.

[6]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Gene H. Golub,et al.  Numerical methods for computing angles between linear subspaces , 1971, Milestones in Matrix Computation.

[8]  Luc Van Gool,et al.  Cascaded Confidence Filtering for Improved Tracking-by-Detection , 2010, ECCV.

[9]  Mohan M. Trivedi,et al.  3-D Posture and Gesture Recognition for Interactivity in Smart Spaces , 2012, IEEE Transactions on Industrial Informatics.

[10]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[11]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[12]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[13]  Youfu Li,et al.  Robust visual tracking with structured sparse representation appearance model , 2012, Pattern Recognit..

[14]  N. Ahuja,et al.  Robust Visual Tracking via MultiTask Sparse Learning , 2012 .

[15]  Yonina C. Eldar,et al.  Block-Sparse Signals: Uncertainty Relations and Efficient Recovery , 2009, IEEE Transactions on Signal Processing.

[16]  Youfu Li,et al.  Enhanced Particles With Pseudolikelihoods for Three-Dimensional Tracking , 2009, IEEE Transactions on Industrial Electronics.

[17]  Yazhe Tang,et al.  Structured sparse representation appearance model for robust visual tracking , 2011, 2011 IEEE International Conference on Robotics and Automation.

[18]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Ralph R. Martin,et al.  Merging and Splitting Eigenspace Models , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Junzhou Huang,et al.  Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization , 2010, ECCV.

[21]  David J. Kriegman,et al.  Visual tracking and recognition using probabilistic appearance manifolds , 2005, Comput. Vis. Image Underst..

[22]  Bohyung Han,et al.  Learning occlusion with likelihoods for visual tracking , 2011, 2011 International Conference on Computer Vision.

[23]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[24]  Michael Lindenbaum,et al.  Sequential Karhunen-Loeve basis extraction and its application to images , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[25]  Youfu Li,et al.  Game-theoretical occlusion handling for multi-target visual tracking , 2013, Pattern Recognit..

[26]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Gérard G. Medioni,et al.  Online Tracking and Reacquisition Using Co-trained Generative and Discriminative Trackers , 2008, ECCV.

[28]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[29]  Ming Yang,et al.  Tracking Nonstationary Visual Appearances by Data-Driven Adaptation , 2009, IEEE Transactions on Image Processing.

[30]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[31]  Song Wang,et al.  Object tracking via appearance modeling and sparse representation , 2011, Image Vis. Comput..