SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA

We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in fall 2014. The HST light curve of SN Refsdal has a shape consistent with the distinctive, slowly rising light curves of SN 1987A-like SNe, and we find strong evidence for a broad Hα P-Cygni profile and Na I D absorption in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, largely powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong Hα and Na I D absorption. From the grism spectrum, we measure an Hα expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the Hα emission of the WFC3 and X-shooter spectra, separated by ∼2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, photometry of SN Refsdal favors bluer B − V and V − R colors and one of the largest luminosities for the assumed range of potential magnifications. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material. Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3 ± 0.1 dex and <8.4 dex, respectively) near the explosion site.

[1]  J. Sollerman,et al.  Long-rising Type II supernovae from PTF and CCCP , 2016, 1601.07368.

[2]  M. Nonino,et al.  DEJA VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL , 2015, 1512.04654.

[3]  M. Oguri,et al.  PRECISE STRONG LENSING MASS MODELING OF FOUR HUBBLE FRONTIER FIELD CLUSTERS AND A SAMPLE OF MAGNIFIED HIGH-REDSHIFT GALAXIES , 2015, 1510.06400.

[4]  R. Massey,et al.  Hubble Frontier Fields: predictions for the return of SN Refsdal with the MUSE and GMOS spectrographs , 2015, 1509.08914.

[5]  B. Weiner,et al.  SN REFSDAL: PHOTOMETRY AND TIME DELAY MEASUREMENTS OF THE FIRST EINSTEIN CROSS SUPERNOVA , 2015, 1512.05734.

[6]  M. Lombardi,et al.  THE STORY OF SUPERNOVA “REFSDAL” TOLD BY MUSE , 2015, 1511.04093.

[7]  J. Diego,et al.  “REFSDAL” MEETS POPPER: COMPARING PREDICTIONS OF THE RE-APPEARANCE OF THE MULTIPLY IMAGED SUPERNOVA BEHIND MACSJ1149.5+2223 , 2015, 1510.05750.

[8]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[9]  J. Prochaska,et al.  A highly-ionized region surrounding SN Refsdal revealed by MUSE , 2015, 1509.07515.

[10]  A. Fontana,et al.  THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). I. SURVEY OVERVIEW AND FIRST DATA RELEASE , 2015, 1509.00475.

[11]  J. Diego,et al.  A free-form prediction for the reappearance of supernova Refsdal in the Hubble Frontier Fields cluster MACSJ1149.5+2223 , 2015, 1504.05953.

[12]  A. Coil,et al.  THE MOSDEF SURVEY: MEASUREMENTS OF BALMER DECREMENTS AND THE DUST ATTENUATION CURVE AT REDSHIFTS z ∼ 1.4–2.6 , 2015, 1504.02782.

[13]  L. Kewley,et al.  H II REGION METALLICITY CONSTRAINTS NEAR THE SITE OF THE STRONGLY LENSED SUPERNOVA “SN REFSDAL” AT REDSHIFT 1.49 , 2015, 1503.08822.

[14]  Mansi M. Kasliwal,et al.  PTF11iqb: cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae , 2015, 1501.02820.

[15]  T. Treu,et al.  Gravitational Lensing: Einstein’s unfinished symphony , 2015 .

[16]  M. Oguri Predicted properties of multiple images of the strongly lensed supernova SN Refsdal. , 2014, 1411.6443.

[17]  A. Fontana,et al.  Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens , 2014, Science.

[18]  M. Oguri,et al.  THE SIZES OF z ∼ 6–8 LENSED GALAXIES FROM THE HUBBLE FRONTIER FIELDS ABELL 2744 DATA , 2014, 1410.1535.

[19]  K. Sharon,et al.  REVISED LENS MODEL FOR THE MULTIPLY IMAGED LENSED SUPERNOVA, “SN REFSDAL” IN MACS J1149+2223 , 2014, 1411.6933.

[20]  A. Fontana,et al.  THROUGH THE LOOKING GLASS: HST SPECTROSCOPY OF FAINT GALAXIES LENSED BY THE FRONTIER FIELDS CLUSTER MACSJ0717.5+3745 , 2014, 1401.0532.

[21]  J. Prieto,et al.  SN 2009ip and SN 2010mc: core-collapse Type IIn supernovae arising from blue supergiants , 2013, 1308.0112.

[22]  D. Burke,et al.  Weighing the Giants – III. Methods and measurements of accurate galaxy cluster weak-lensing masses , 2012, 1208.0605.

[23]  Caltech,et al.  Weighing the Giants – II. Improved calibration of photometry from stellar colours and accurate photometric redshifts , 2012, 1208.0602.

[24]  R. Blandford,et al.  Weighing the Giants - I. Weak-lensing masses for 51 massive galaxy clusters: project overview, data analysis methods and cluster images , 2012, 1208.0597.

[25]  W. Freudling,et al.  Automated data reduction workflows for astronomy , 2013, 1311.5411.

[26]  J. Sollerman,et al.  A metallicity study of 1987A-like supernova host galaxies , 2013, 1308.5545.

[27]  J. Wheeler,et al.  Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.

[28]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[29]  Sean Adkins,et al.  MOSFIRE, the multi-object spectrometer for infra-red exploration at the Keck Observatory , 2012, Other Conferences.

[30]  J. Kneib,et al.  Stellar Velocity Dispersions and Emission Line Properties of Sdss-iii/boss Galaxies Journal Article , 2022 .

[31]  H. Rix,et al.  3D-HST GRISM SPECTROSCOPY OF A GRAVITATIONALLY LENSED, LOW-METALLICITY STARBURST GALAXY AT z = 1.847 , 2012, 1207.3795.

[32]  P. McCarthy,et al.  DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 ⩽ z ⩽ 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY , 2012, 1206.1867.

[33]  S. Gonzaga,et al.  The DrizzlePac Handbook , 2012 .

[34]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[35]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[36]  Michael C. Cooper,et al.  spec2d: DEEP2 DEIMOS Spectral Pipeline , 2012 .

[37]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[38]  T. Wong,et al.  INTERSTELLAR H i AND H2 IN THE MAGELLANIC CLOUDS: AN EXPANDED SAMPLE BASED ON ULTRAVIOLET ABSORPTION-LINE DATA , 2011, 1111.3674.

[39]  M. L. Pumo,et al.  SN 2009E: a faint clone of SN 1987A , 2011, 1111.2497.

[40]  S. E. Persson,et al.  The Type II supernovae 2006V and 2006au: two SN 1987A-like events , , 2011, 1111.2509.

[41]  R. Kirshner,et al.  CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS , 2011, 1110.1377.

[42]  R. Manuputy,et al.  X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope , 2011, 1110.1944.

[43]  L. Kewley,et al.  METALLICITY GRADIENT OF A LENSED FACE-ON SPIRAL GALAXY AT REDSHIFT 1.49 , 2011, 1103.3277.

[44]  E. L. Robinson,et al.  SN 2008am: A SUPER-LUMINOUS TYPE IIn SUPERNOVA , 2011, 1101.3581.

[45]  R. Kirshner,et al.  Peculiar Type II Supernovae from Blue Supergiants , 2011, 1101.1298.

[46]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[47]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS , 2010, 1010.2689.

[48]  Harland Epps,et al.  Design and development of MOSFIRE: the multi-object spectrometer for infrared exploration at the Keck Observatory , 2010, Astronomical Telescopes + Instrumentation.

[49]  Sabine Moehler,et al.  The X-shooter pipeline , 2010, Astronomical Telescopes + Instrumentation.

[50]  J. Anderson,et al.  Observational constraints on the progenitor metallicities of core-collapse supernovae★ , 2010, 1006.0968.

[51]  R. Foley,et al.  SPECTRAL EVOLUTION OF THE EXTRAORDINARY TYPE IIn SUPERNOVA 2006gy , 2009, 0906.2200.

[52]  A. M. Swinbank,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF A SPECTACULAR NEW STRONG-LENSING GALAXY CLUSTER: MACS J1149.5+2223 AT z = 0.544 , 2009, 0911.2003.

[53]  J. Walsh,et al.  Building-up a database of spectro-photometric standards from the UV to the NIR , 2009, Proceedings of the International Astronomical Union.

[54]  T. Broadhurst,et al.  DISCOVERY OF THE LARGEST KNOWN LENSED IMAGES FORMED BY A CRITICALLY CONVERGENT LENSING CLUSTER , 2009, 0906.5079.

[55]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[56]  S. B. Cenko,et al.  DISCOVERY OF THE ULTRA-BRIGHT TYPE II-L SUPERNOVA 2008es , 2008, 0808.2812.

[57]  Adam A. Miller,et al.  THE EXCEPTIONALLY LUMINOUS TYPE II-LINEAR SUPERNOVA 2008es , 2008, 0808.2193.

[58]  R. Kirshner,et al.  Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.

[59]  Charles E. Hansen,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[60]  James Lyke,et al.  OSIRIS: a diffraction limited integral field spectrograph for Keck , 2006, SPIE Astronomical Telescopes + Instrumentation.

[61]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[62]  J. Sollerman,et al.  SN 1998A: explosion of a blue supergiant , 2005, astro-ph/0504114.

[63]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[64]  M. Turatto,et al.  Low‐luminosity Type II supernovae: spectroscopic and photometric evolution , 2003, astro-ph/0309264.

[65]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[66]  R. Haynes,et al.  A new look at the large-scale H I structure of the Large Magellanic Cloud , 2002, astro-ph/0210501.

[67]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[68]  N. Chugai Broad emission lines from the opaque electron‐scattering environment of SN 1998S , 2001, astro-ph/0106234.

[69]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[70]  K. Nomoto,et al.  Radiation Hydrodynamics of SN 1987A. I. Global Analysis of the Light Curve for the First 4 Months , 1999, astro-ph/9911205.

[71]  A. Crotts,et al.  SN 1987A’s Circumstellar Envelope. II. Kinematics of the Three Rings and the Diffuse Nebula , 1999, astro-ph/9907367.

[72]  A. Raftery,et al.  Three Types of Gamma-Ray Bursts , 1998, astro-ph/9802085.

[73]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[74]  A. Kim,et al.  A GENERALIZED K CORRECTION FOR TYPE IA SUPERNOVAE: COMPARING R-BAND PHOTOMETRY BEYOND Z=0.2 WITH B, V, AND R-BAND NEARBY PHOTOMETRY , 1995, astro-ph/9505024.

[75]  N. Suntzeff,et al.  SN 1987A in the LMC. III. UBVRI photometry at Cerro Tololo , 1990 .

[76]  N. Suntzeff,et al.  An optical spectrophotometric atlas of supernova 1987A in the LMC. II - CCD observations from day 198 to 805 , 1990 .

[77]  M. Hamuy,et al.  An Optical Spectrophotometric Atlas of Supernova 1987A in the LMC. I. The First 130 Days , 1988 .

[78]  R. Kirshner,et al.  The progenitor of SN 1987A - Spatially resolved ultraviolet spectroscopy of the supernova field , 1987 .

[79]  N. Panagia,et al.  The progenitor of SN1987A , 1987, Nature.

[80]  D. Branch,et al.  A comparative study of supernova light curves. , 1985 .

[81]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[82]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[83]  Bernard E. J. Pagel,et al.  On the composition of H II regions in southern galaxies – I. NGC 300 and 1365 , 1979 .

[84]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .

[85]  W. Arnett On the theory of type I supernovae. , 1979 .

[86]  N. Sugiura Further analysts of the data by akaike' s information criterion and the finite corrections , 1978 .

[87]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .