Teaching cells to dance: the impact of transistor miniaturization on the manipulation of populations of living cells

Microelectronic technology provides a powerful framework for the implementation of devices that can manipulate living microorganisms. This paper reviews the impact that the current scaling trend in feature size of CMOS technology will have on a few basic operations, such as cell manipulation and sensing.

[1]  N. Manaresi,et al.  A CMOS chip for individual cell manipulation and detection , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[2]  H. Morgan,et al.  Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws , 2003 .

[3]  R. Guerrieri,et al.  Capacitive sensor array for localization of bioparticles in CMOS lab-on-a-chip , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[4]  Marc Madou,et al.  Scaling issues in chemical and biological sensors , 2003, Proc. IEEE.

[5]  R. Thewes,et al.  Sensor arrays for fully-electronic DNA detection on CMOS , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[6]  A Heller,et al.  Implanted electrochemical glucose sensors for the management of diabetes. , 1999, Annual review of biomedical engineering.

[7]  G. Fuhr,et al.  Cell manipulation and cultivation under a.c. electric field influence in highly conductive culture media. , 1994, Biochimica et biophysica acta.

[8]  G. Temes,et al.  Analog MOS Integrated Circuits for Signal Processing , 1986 .

[9]  Hon-Sum Philip Wong,et al.  Technology and device scaling considerations for CMOS imagers , 1996 .

[10]  B. Eversmann,et al.  A 128 × 128 CMOS bio-sensor array for extracellular recording of neural activity , 2003 .

[11]  Hywel Morgan,et al.  AC ELECTROKINETICS: COLLOIDS AND NANOPARTICLES. , 2002 .

[12]  Hideaki Nakamura,et al.  Current research activity in biosensors , 2003, Analytical and bioanalytical chemistry.

[13]  Ronald Pethig,et al.  Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes , 1992 .

[14]  G. Fuhr,et al.  Paired microelectrode system: dielectrophoretic particle sorting and force calibration , 1999 .

[15]  Castellanos,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Wolfgang Schuhmann,et al.  Microbial biosensor array with transport mutants of Escherichia coli K12 for the simultaneous determination of mono-and disaccharides. , 2002, Biosensors & bioelectronics.

[17]  D. Schmitt-Landsiedel,et al.  A 128 /spl times/ 128 CMOS bio-sensor array for extracellular recording of neural activity , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[18]  H. Morgan,et al.  Ac electrokinetics: a review of forces in microelectrode structures , 1998 .

[19]  M. Chan,et al.  A high-density conduction-based micro-DNA identification array fabricated with a CMOS compatible process , 2003 .

[20]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[21]  John G. Proakis,et al.  Digital Communications , 1983 .

[22]  Eric Renard,et al.  Implantable closed-loop glucose-sensing and insulin delivery: the future for insulin pump therapy. , 2002, Current opinion in pharmacology.

[23]  H. A. Pohl The Motion and Precipitation of Suspensoids in Divergent Electric Fields , 1951 .