Aerothermal behaviour of a SiC fibre-reinforced ZrB2 sharp component in supersonic regime

[1]  D. Sciti,et al.  Oxidation of ZrB2 Ceramics Containing SiC as Particles, Whiskers, or Short Fibers , 2011 .

[2]  R. Savino,et al.  Dynamic oxidation of ultra-high temperature ZrB2–SiC under high enthalpy supersonic flows , 2011 .

[3]  D. Sciti,et al.  Toughened ZrB2-based ceramics through SiC whisker or SiC chopped fiber additions , 2010 .

[4]  Raffaele Savino,et al.  Plasma wind tunnel testing of ultra-high temperature ZrB2-SiC composites under hypersonic re-entry conditions , 2010 .

[5]  D. Sciti,et al.  Arc-Jet Testing on HfB2 - TaSi2 Models: Effect of the Geometry on the Aerothermal Behaviour~!2009-09-21~!2009-11-06~!2010-04-20~! , 2010 .

[6]  Mario De Stefano Fumo,et al.  Arc-Jet Testing of Ultra-High-Temperature-Ceramics , 2010 .

[7]  D. Sciti,et al.  Arc-Jet Testing on HfB - TaSi Models: Effect of the Geometry on the Aerothermal Behaviour , 2010 .

[8]  Zhi Wang,et al.  Oxidation mechanism and resistance of ZrB2–SiC composites , 2009 .

[9]  J. Halloran,et al.  Oxidation of ZrB2–SiC: Influence of SiC Content on Solid and Liquid Oxide Phase Formation , 2009 .

[10]  Jiecai Han,et al.  Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions , 2008 .

[11]  T. Lenosky,et al.  Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms , 2008 .

[12]  Jiecai Han,et al.  Oxidation-resistant ZrB2-SiC composites at 2200 °C , 2008 .

[13]  Jiecai Han,et al.  Characteristics and Mechanisms of Dynamic Oxidation for ZrB2-SiC Based UHTC , 2008 .

[14]  Raffaele Savino,et al.  Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials , 2008 .

[15]  Ke Yang,et al.  Ablation behaviors of ultra-high temperature ceramic composites , 2007 .

[16]  Mark M. Opeka,et al.  A Model for the Oxidation of ZrB2, HfB2 and TiB2 (Postprint) , 2007 .

[17]  R. Savino,et al.  Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions , 2007 .

[18]  William G. Fahrenholtz,et al.  Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .

[19]  Rajiv K. Kalia,et al.  A Perspective on Modeling Materials in Extreme Environments: Oxidation of Ultrahigh-Temperature Ceramics , 2006 .

[20]  Raffaele Savino,et al.  Aerothermodynamic study of UHTC-based thermal protection systems , 2005 .

[21]  Donald T. Ellerby,et al.  Oxidation of ZrB₂-SiC Ceramics under Atmospheric and Reentry Conditions , 2005 .

[22]  Sylvia M. Johnson,et al.  Ultra High Temperature Ceramic Composites , 2005 .

[23]  J. Spain,et al.  Designing for ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx and αHf(N) , 2004 .

[24]  Donald T. Ellerby,et al.  Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics , 2004 .

[25]  Alida Bellosi,et al.  Oxidation of ZrB2-Based Ceramics in Dry Air , 2003 .

[26]  K. Okamura,et al.  Thermal stability of low-oxygen silicon carbide fibers (Hi-Nicalon) in carbon monoxide , 2003 .

[27]  Y. Morisada,et al.  Oxidation Behavior of Si‐C‐O Fibers (Nicalon) under Oxygen Partial Pressures from 102 to 105 Pa at 1773 k , 2000 .

[28]  M. Monthioux,et al.  Thermodynamic Approach to the Oxidation of Hi-Nicalon Fiber , 1999 .

[29]  A. Bunsell,et al.  Microstructure and thermo‐mechanical stability of a low‐oxygen Nicalon fibre , 1995 .