On Series-Parallel Pomset Languages: Rationality, Context-Freeness and Automata

Concurrent Kleene Algebra (CKA) is a formalism to study concurrent programs. Like previous Kleene Algebra extensions, developing a correspondence between denotational and operational perspectives is important, for both foundations and applications. This paper takes an important step towards such a correspondence, by precisely relating bi-Kleene Algebra (BKA), a fragment of CKA, to a novel type of automata, pomset automata (PAs). We show that PAs can implement the BKA semantics of series-parallel rational expressions, and that a class of PAs can be translated back to these expressions. We also characterise the behavior of general PAs in terms of context-free pomset grammars; consequently, universality, equivalence and series-parallel rationality of general PAs are undecidable.

[1]  Pascal Weil,et al.  Series-parallel languages and the bounded-width property , 2000, Theor. Comput. Sci..

[2]  Zoltán Ésik,et al.  Higher Dimensional Automata , 2002, J. Autom. Lang. Comb..

[3]  Georg Struth,et al.  Completeness Theorems for Bi-Kleene Algebras and Series-Parallel Rational Pomset Languages , 2014, RAMiCS.

[4]  Damien Pous,et al.  Petri Automata for Kleene Allegories , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[5]  Nate Foster,et al.  NetKAT: semantic foundations for networks , 2014, POPL.

[6]  Sheila A. Greibach,et al.  A note on undecidable properties of formal languages , 1968, Mathematical systems theory.

[7]  Janusz A. Brzozowski,et al.  Derivatives of Regular Expressions , 1964, JACM.

[8]  J. Conway Regular algebra and finite machines , 1971 .

[9]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[10]  Alaa A. Kharbouch,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[11]  Georg Struth,et al.  Completeness Theorems for Pomset Languages and Concurrent Kleene Algebras , 2017, ArXiv.

[12]  Bas Luttik,et al.  Brzozowski Goes Concurrent - A Kleene Theorem for Pomset Languages , 2017, CONCUR.

[13]  Ken Thompson,et al.  Programming Techniques: Regular expression search algorithm , 1968, Commun. ACM.

[14]  Alexandra Silva,et al.  Concurrent Kleene Algebra: Free Model and Completeness , 2017, ESOP.

[15]  Bell Telephone,et al.  Regular Expression Search Algorithm , 1968 .

[16]  Dexter Kozen A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..

[17]  J. Hopcroft,et al.  A Linear Algorithm for Testing Equivalence of Finite Automata. , 1971 .

[18]  Jurriaan Rot,et al.  Coalgebraic Bisimulation-Up-To , 2013, SOFSEM.

[19]  Peter Jipsen,et al.  Concurrent Kleene algebra with tests and branching automata , 2016, J. Log. Algebraic Methods Program..

[20]  Jay L. Gischer,et al.  The Equational Theory of Pomsets , 1988, Theor. Comput. Sci..

[21]  J. Grabowski,et al.  On partial languages , 1981, Fundam. Informaticae.

[22]  Georg Struth,et al.  On Decidability of Concurrent Kleene Algebra , 2017, CONCUR.

[23]  Nelma Moreira,et al.  Deciding Synchronous Kleene Algebra with Derivatives , 2015, CIAA.

[24]  Cristian Prisacariu,et al.  Synchronous Kleene algebra , 2010 .

[25]  Damien Pous,et al.  Petri Automata , 2017, Log. Methods Comput. Sci..

[26]  Dexter Kozen,et al.  Kleene algebra with tests , 1997, TOPL.

[27]  Georg Struth,et al.  Concurrent Kleene Algebra , 2009, CONCUR.

[28]  Robert McNaughton,et al.  Regular Expressions and State Graphs for Automata , 1960, IRE Trans. Electron. Comput..

[29]  Peter Jipsen Concurrent Kleene Algebra with Tests , 2014, RAMICS.