On Series-Parallel Pomset Languages: Rationality, Context-Freeness and Automata
暂无分享,去创建一个
Bas Luttik | Alexandra Silva | Fabio Zanasi | Tobias Kappé | Paul Brunet | Alexandra Silva | B. Luttik | Paul Brunet | Tobias Kappé | F. Zanasi
[1] Pascal Weil,et al. Series-parallel languages and the bounded-width property , 2000, Theor. Comput. Sci..
[2] Zoltán Ésik,et al. Higher Dimensional Automata , 2002, J. Autom. Lang. Comb..
[3] Georg Struth,et al. Completeness Theorems for Bi-Kleene Algebras and Series-Parallel Rational Pomset Languages , 2014, RAMiCS.
[4] Damien Pous,et al. Petri Automata for Kleene Allegories , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.
[5] Nate Foster,et al. NetKAT: semantic foundations for networks , 2014, POPL.
[6] Sheila A. Greibach,et al. A note on undecidable properties of formal languages , 1968, Mathematical systems theory.
[7] Janusz A. Brzozowski,et al. Derivatives of Regular Expressions , 1964, JACM.
[8] J. Conway. Regular algebra and finite machines , 1971 .
[9] S C Kleene,et al. Representation of Events in Nerve Nets and Finite Automata , 1951 .
[10] Alaa A. Kharbouch,et al. Three models for the description of language , 1956, IRE Trans. Inf. Theory.
[11] Georg Struth,et al. Completeness Theorems for Pomset Languages and Concurrent Kleene Algebras , 2017, ArXiv.
[12] Bas Luttik,et al. Brzozowski Goes Concurrent - A Kleene Theorem for Pomset Languages , 2017, CONCUR.
[13] Ken Thompson,et al. Programming Techniques: Regular expression search algorithm , 1968, Commun. ACM.
[14] Alexandra Silva,et al. Concurrent Kleene Algebra: Free Model and Completeness , 2017, ESOP.
[15] Bell Telephone,et al. Regular Expression Search Algorithm , 1968 .
[16] Dexter Kozen. A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..
[17] J. Hopcroft,et al. A Linear Algorithm for Testing Equivalence of Finite Automata. , 1971 .
[18] Jurriaan Rot,et al. Coalgebraic Bisimulation-Up-To , 2013, SOFSEM.
[19] Peter Jipsen,et al. Concurrent Kleene algebra with tests and branching automata , 2016, J. Log. Algebraic Methods Program..
[20] Jay L. Gischer,et al. The Equational Theory of Pomsets , 1988, Theor. Comput. Sci..
[21] J. Grabowski,et al. On partial languages , 1981, Fundam. Informaticae.
[22] Georg Struth,et al. On Decidability of Concurrent Kleene Algebra , 2017, CONCUR.
[23] Nelma Moreira,et al. Deciding Synchronous Kleene Algebra with Derivatives , 2015, CIAA.
[24] Cristian Prisacariu,et al. Synchronous Kleene algebra , 2010 .
[25] Damien Pous,et al. Petri Automata , 2017, Log. Methods Comput. Sci..
[26] Dexter Kozen,et al. Kleene algebra with tests , 1997, TOPL.
[27] Georg Struth,et al. Concurrent Kleene Algebra , 2009, CONCUR.
[28] Robert McNaughton,et al. Regular Expressions and State Graphs for Automata , 1960, IRE Trans. Electron. Comput..
[29] Peter Jipsen. Concurrent Kleene Algebra with Tests , 2014, RAMICS.