Extensive air shower simulations at the highest energies

Abstract Air shower simulation programs are essential tools for the analysis of data from cosmic ray experiments and for planning the layout of new detectors. They are used to estimate the energy and mass of the primary particle. Unfortunately the model uncertainties translate directly into systematic errors in the energy and mass determination. Aiming at energies>10 19 eV, the models have to be extrapolated far beyond the energies available at accelerators. On the other hand, hybrid measurement of ground particle densities and calorimetric shower energy, as will be provided by the Pierre Auger Observatory, will strongly constrain shower models. While the main uncertainty of contemporary models comes from our poor knowledge of the (soft) hadronic interactions at high energies, also electromagnetic interactions, low-energy hadronic interactions and the particle transport influence details of the shower development. We review here the physics processes and some of the computational techniques of air shower models presently used for highest energies, and discuss the properties and limitations of the models.

[1]  A. Misaki,et al.  On the characteristics of individual cascade showers with the LPM effect at extremely high energies , 1991 .

[2]  A. Chilingarian,et al.  A Non-parametric Approach to Infer the Energy Spectrum and the Mass Composition of Cosmic Rays Kascade Collaboration , 2022 .

[3]  Yoshida,et al.  Inelastic cross section for p-air collisions from air shower experiments and total cross section for p-p collisions up to sqrt s =24 TeV. , 1993, Physical review letters.

[4]  et al.,et al.  Test of high-energy interaction models using the hadronic core of EAS , 1999 .

[5]  A. Hillas Shower Simulation: Lessons from MOCCA , 1997 .

[6]  Colin J. Lambert,et al.  Interactions of high-energy ( E > 5 × 10 19 eV) photons in the Earth's magnetic field , 1981 .

[7]  Ranft Dual parton model at cosmic ray energies. , 1995, Physical review. D, Particles and fields.

[8]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[9]  T. Gaisser,et al.  Proton-proton cross sections from 1 to 100 TeV , 1983 .

[10]  S. Giani,et al.  GEANT Detector Description and Simulation Tool , 1994 .

[11]  Huang,et al.  Evidence for correlated changes in the spectrum and composition of cosmic rays at extremely high energies. , 1993, Physical review letters.

[12]  J. Knapp Hadronic interaction models and air shower simulations , 1999 .

[13]  E. Levin,et al.  Semihard processes in QCD , 1983 .

[14]  D. Rogers,et al.  EGS4 code system , 1985 .

[15]  K. Shinozaki,et al.  Comparison of AGASA data with CORSIKA simulation , 1999, astro-ph/9912222.

[16]  J. Knapp,et al.  CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .

[17]  et al,et al.  Test of hadronic interaction models in the forward region with KASCADE event rates , 2001 .

[18]  S. Bass,et al.  RELATIVISTIC HADRON-HADRON COLLISIONS IN THE ULTRA-RELATIVISTIC QUANTUM MOLECULAR DYNAMICS MODEL , 1999, hep-ph/9909407.

[19]  J. Knapp,et al.  Extensive Air Shower Simulation with CORSIKA: A User''''s Manual , 1993 .

[20]  J. Capdevielle A Monte Carlo generator for cosmic-ray collisions , 1989 .

[21]  R. Glauber,et al.  High-energy scattering of protons by nuclei , 1970 .

[22]  S. Bass,et al.  Microscopic models for ultrarelativistic heavy ion collisions , 1998, nucl-th/9803035.

[23]  A. B. Migdal,et al.  Bremsstrahlung and pair production in condensed media at high-energies , 1956 .

[24]  H. J. Gils,et al.  The Kascade experiment , 1997 .

[25]  Goodman,et al.  Measurement of rho, the ratio of the real to the imaginary part of the p-barp forward elastic-scattering amplitude, at sqrt s =1.8 TeV. , 1992, Physical review letters.

[26]  E. Barrelet,et al.  Total photoproduction cross-section measurement at HERA energies , 1993 .

[27]  M. Albrow,et al.  Measurement of the antiproton-proton total cross section at s =546 and 1800 GeV , 1994 .

[28]  J. C. Hart,et al.  A measurement of σtot(γp) at sqrt(s)=210 GeV , 1992 .

[29]  H. Mielke,et al.  Cosmic ray hadron flux at sea level up to 15 TeV , 1994 .

[30]  N. Kalmykov,et al.  Quark-Gluon String Model and EAS Simulation Problems at Ultra-High Energies , 1997 .

[31]  K. Werner Strings, pomerons and the VENUS model of hadronic interactions at ultrarelativistic energies , 1993 .

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  A. Cillis,et al.  Extended Air Showers and Muon Interactions , 2000, astro-ph/0010488.

[34]  Huang,et al.  Evidence for changing of cosmic ray composition between 10(17) and 10(18) eV from multicomponent measurements , 2000, Physical review letters.

[35]  W. Rhode,et al.  Energy spectrum and chemical composition of cosmic rays between 0.3 and 10 PeV determined from the Cherenkov-light and charged-particle distributions in air showers , 2000 .

[36]  H. Fesefeldt,et al.  The simulation of hadronic showers : physics and applications , 1985 .

[37]  H1 Collaboration , 1997 .

[38]  Dawson,et al.  Cosmic-ray composition around 10(1)8 eV. , 1993, Physical review. D, Particles and fields.

[39]  M. R. Mondardini,et al.  A Measurement of the proton-antiproton total cross section at $\sqrt{s}$ = 1.8 TeV , 1999 .

[40]  T. Pierog,et al.  Parton-based Gribov–Regge theory , 2000 .

[41]  Y. Mizumoto,et al.  Total Proton Proton Cross-Section at s**(1/2) = 30-TeV , 1984 .

[42]  B. Dawson,et al.  A comparison of cosmic ray composition measurements at the highest energies , 1998 .

[43]  M. Kobal A thinning method using weight limitation for air-shower simulations , 2001 .

[44]  G. J. Alner,et al.  Scaling of pseudorapidity distributions at c.m. energies up to 0.9 TeV , 1986 .

[45]  E. al.,et al.  A Measurement of the proton structure function f2 (x, q**2) at low x and low q**2 at HERA , 1997, hep-ex/9703012.

[46]  Engel,et al.  Nucleus-nucleus collisions and interpretation of cosmic-ray cascades. , 1982, Physical review. D, Particles and fields.

[47]  Influence of the LPM effect and dielectric suppression on particle air showers , 1998, astro-ph/9809334.

[48]  Fletcher,et al.  SIBYLL: An event generator for simulation of high energy cosmic ray cascades. , 1994, Physical review. D, Particles and fields.

[49]  Review of particle physics. Particle Data Group , 2000 .

[50]  Tau neutrinos in the Auger Observatory: a new window to UHECR sources , 2001, astro-ph/0104452.

[51]  K. Capelle,et al.  On the detection of ultra high energy neutrinos with the Auger observatory , 1998, astro-ph/9801313.

[52]  U. Utah,et al.  A measurement of the cosmic ray spectrum and composition at the knee , 2000, astro-ph/0003190.