Conductivity-based detection techniques in nanofluidic devices.

This review covers conductivity detection in fabricated nanochannels and nanopores. Improvements in nanoscale sensing are a direct result of advances in fabrication techniques, which produce devices with channels and pores with reproducible dimensions and in a variety of materials. Analytes of interest are detected by measuring changes in conductance as the analyte accumulates in the channel or passes transiently through the pore. These detection methods take advantage of phenomena enhanced at the nanoscale, such as ion current rectification, surface conductance, and dimensions comparable to the analytes of interest. The end result is the development of sensing technologies for a broad range of analytes, e.g., ions, small molecules, proteins, nucleic acids, and particles.

[1]  Reinhard Neumann,et al.  Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. , 2009, Small.

[2]  Warren K. Mino,et al.  A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors. , 2007, Small.

[3]  R. Eisenberg,et al.  Nanoprecipitation-assisted ion current oscillations. , 2008, Nature nanotechnology.

[4]  S. D. Collins,et al.  Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[5]  R. Neumann,et al.  Saccharide/glycoprotein recognition inside synthetic ion channels modified with boronic acid , 2012 .

[6]  Juan Liu,et al.  Impedance characteristics of amine modified single glass nanopores. , 2010, Analytical chemistry.

[7]  Michael Zwolak,et al.  Electronic signature of DNA nucleotides via transverse transport. , 2004, Nano letters.

[8]  Javier Cervera,et al.  Ionic conduction, rectification, and selectivity in single conical nanopores. , 2006, The Journal of chemical physics.

[9]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[10]  Mubarak Ali,et al.  Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization. , 2012, ACS nano.

[11]  H. Shintaku,et al.  Tracking single-particle dynamics via combined optical and electrical sensing , 2013, Scientific Reports.

[12]  A. Meller,et al.  Synchronous optical and electrical detection of biomolecules traversing through solid-state nanopores. , 2010, The Review of scientific instruments.

[13]  P. Renaud,et al.  Label-free determination of protein-surface interaction kinetics by ionic conductance inside a nanochannel. , 2009, Lab on a chip.

[14]  Long Luo,et al.  Controlling Nanoparticle Dynamics in Conical Nanopores , 2013 .

[15]  Reinhard Neumann,et al.  Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes. , 2010, Chemical communications.

[16]  Jiang Zhe,et al.  Label-free biomarker assay in a microresistive pulse sensor via immunoaggregation. , 2014, Analytical chemistry.

[17]  Mubarak Ali,et al.  Calcium binding and ionic conduction in single conical nanopores with polyacid chains: model and experiments. , 2012, ACS nano.

[18]  Ronald W. Davis,et al.  Control of DNA capture by nanofluidic transistors. , 2012, ACS nano.

[19]  Z. Siwy,et al.  Precipitation-Induced Voltage-Dependent Ion Current Fluctuations in Conical Nanopores , 2010 .

[20]  Zhijun Jiang,et al.  Fabrication of nanopores with embedded annular electrodes and transverse carbon nanotube electrodes , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  Zuzanna S Siwy,et al.  Detecting single porphyrin molecules in a conically shaped synthetic nanopore. , 2005, Nano letters.

[22]  Z. Siwy,et al.  Charged Particles Modulate Local Ionic Concentrations and Cause Formation of Positive Peaks in Resistive-Pulse-Based Detection , 2014 .

[23]  W. Tremel,et al.  Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein-lectin interactions. , 2011, Nanoscale.

[24]  H. White,et al.  Pressure-Driven Nanoparticle Transport across Glass Membranes Containing a Conical-Shaped Nanopore , 2011 .

[25]  Christina Trautmann,et al.  An Asymmetric Polymer Nanopore for Single Molecule Detection , 2004 .

[26]  E. Boczko,et al.  A Microfluidic Cell Size/Density Sensor by Resistive Pulse Detection , 2013 .

[27]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[28]  A. Majumdar,et al.  Field-effect control of protein transport in a nanofluidic transistor circuit , 2006 .

[29]  L. Komunjer,et al.  A new method to follow crystal growth by coulter counter , 1979 .

[30]  N. Pourmand,et al.  Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette. , 2013, Nanoscale.

[31]  C. P. Bean,et al.  Electrokinetic measurements with submicron particles and pores by the resistive pulse technique , 1977 .

[32]  R. Ahuja,et al.  Theoretical Study of Electronic Transport through DNA Nucleotides in a Double-Functionalized Graphene Nanogap , 2013 .

[33]  A. Manz,et al.  Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries. , 2004, Lab on a chip.

[34]  Colin Nuckolls,et al.  Translocation of Single-Stranded DNA Through Single-Walled Carbon Nanotubes , 2010, Science.

[35]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[36]  Geoff R. Willmott,et al.  Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor. , 2011, Analytical chemistry.

[37]  S Mohammadi,et al.  A nanofluidic channel with embedded transverse nanoelectrodes , 2009, Nanotechnology.

[38]  Jörg P Kutter,et al.  Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids. , 2011, Analytical chemistry.

[39]  S. Chou,et al.  Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. , 2008, Nano letters.

[40]  Jingmin Jin,et al.  Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. , 2010, Nature nanotechnology.

[41]  Reimar Spohr,et al.  Diode-like single-ion track membrane prepared by electro-stopping , 2001 .

[42]  E. Pop,et al.  Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes. , 2012, ACS nano.

[43]  P. Renaud,et al.  Transport phenomena in nanofluidics , 2008 .

[44]  Juan Liu,et al.  Noninvasive surface coverage determination of chemically modified conical nanopores that rectify ion transport. , 2012, Analytical chemistry.

[45]  Charles M. Lieber,et al.  Local electrical potential detection of DNA by nanowire-nanopore sensors , 2011, Nature nanotechnology.

[46]  Erkki Ruoslahti,et al.  A high-throughput label-free nanoparticle analyser. , 2011, Nature nanotechnology.

[47]  C. Dekker,et al.  Translocation of double-strand DNA through a silicon oxide nanopore. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Jin Zhai,et al.  Light and pH Cooperative Nanofluidic Diode Using a Spiropyran‐Functionalized Single Nanochannel , 2012, Advanced materials.

[49]  Henry S White,et al.  Resistive Pulse Analysis of Microgel Deformation During Nanopore Translocation. , 2011, The journal of physical chemistry. C, Nanomaterials and interfaces.

[50]  R. Crooks,et al.  Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[51]  Emily R. Billinge,et al.  Monitoring aptamer-protein interactions using tunable resistive pulse sensing. , 2014, Analytical chemistry.

[52]  Juan Liu,et al.  Surface charge density determination of single conical nanopores based on normalized ion current rectification. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[53]  Lei Jiang,et al.  Integrating Ionic Gate and Rectifier Within One Solid‐State Nanopore via Modification with Dual‐Responsive Copolymer Brushes , 2010 .

[54]  D. Gracias,et al.  Voltage-gated ion transport through semiconducting conical nanopores formed by metal nanoparticle-assisted plasma etching. , 2012, Nano letters.

[55]  Michael Zwolak,et al.  Fast DNA sequencing via transverse electronic transport. , 2006, Nano letters.

[56]  P. Renaud,et al.  Effect of the surface charge on ion transport through nanoslits , 2005 .

[57]  Sung-Wook Nam,et al.  Ionic field effect transistors with sub-10 nm multiple nanopores. , 2009, Nano letters.

[58]  F. Simmel,et al.  Electrophoretic time-of-flight measurements of single DNA molecules with two stacked nanopores. , 2011, Nano letters.

[59]  E. Wang,et al.  pH-reversed ionic current rectification displayed by conically shaped nanochannel without any modification. , 2011, Nanoscale.

[60]  Aleksei Aksimentiev,et al.  Detection of DNA sequences using an alternating electric field in a nanopore capacitor. , 2008, Nano letters.

[61]  Yaoqun Li,et al.  Covalent modification of single glass conical nanopore channel with 6-carboxymethyl-chitosan for pH modulated ion current rectification , 2010 .

[62]  C Raillon,et al.  Detecting the translocation of DNA through a nanopore using graphene nanoribbons. , 2013, Nature nanotechnology.

[63]  Z. Siwy,et al.  Diffusion and Trapping of Single Particles in Pores with Combined Pressure and Dynamic Voltage , 2014 .

[64]  M. Almasri,et al.  MEMS-based Coulter counter for cell counting and sizing using multiple electrodes , 2010 .

[65]  Peidong Yang,et al.  Nanofluidic diodes based on nanotube heterojunctions. , 2009, Nano letters.

[66]  Richard M Crooks,et al.  A carbon nanotube-based coulter nanoparticle counter. , 2004, Accounts of chemical research.

[67]  Grégory Pandraud,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[68]  Shaurya Prakash,et al.  Determining nanocapillary geometry from electrochemical impedance spectroscopy using a variable topology network circuit model. , 2011, Analytical chemistry.

[69]  M. Taniguchi,et al.  Identifying single nucleotides by tunnelling current. , 2010, Nature nanotechnology.

[70]  R. Neumann,et al.  Biosensing with functionalized single asymmetric polymer nanochannels. , 2010, Macromolecular bioscience.

[71]  R. Smither Use of a Coulter counter to detect discrete changes in cell numbers and volume during growth of Escherichia coli. , 1975, The Journal of applied bacteriology.

[72]  L. Gu,et al.  Method of creating a nanopore-terminated probe for single-molecule enantiomer discrimination. , 2009, Analytical chemistry.

[73]  Jin Zhai,et al.  A photo-induced, and chemical-driven, smart-gating nanochannel. , 2012, Small.

[74]  Kevin Ke,et al.  Label-free affinity assays by rapid detection of immune complexes in submicrometer pores. , 2006, Angewandte Chemie.

[75]  J. Eijkel,et al.  Principles and applications of nanofluidic transport. , 2009, Nature nanotechnology.

[76]  A. Radenović,et al.  Nanopore integrated nanogaps for DNA detection. , 2014, Nano letters.

[77]  Alan R. Dabney,et al.  Reversible cation response with a protein-modified nanopipette. , 2011, Analytical chemistry.

[78]  M. Furuhashi,et al.  Detection of post-translational modifications in single peptides using electron tunnelling currents. , 2014, Nature nanotechnology.

[79]  V. Mussi,et al.  DNA detection with a polymeric nanochannel device. , 2011, Lab on a chip.

[80]  Z. Siwy,et al.  Conical-nanotube ion-current rectifiers: the role of surface charge. , 2004, Journal of the American Chemical Society.

[81]  O. Otto,et al.  Voltage‐driven transport of ions and DNA through nanocapillaries , 2012, Electrophoresis.

[82]  P. Fürjes,et al.  Calibration-less sizing and quantitation of polymeric nanoparticles and viruses with quartz nanopipets. , 2014, Analytical chemistry.

[83]  A. Majumdar,et al.  Electrostatic control of ions and molecules in nanofluidic transistors. , 2005, Nano letters.

[84]  Mubarak Ali,et al.  Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials , 2014 .

[85]  J. Alarie,et al.  A device for performing lateral conductance measurements on individual double-stranded DNA molecules. , 2012, ACS nano.

[86]  J. Dwyer,et al.  Conductance-Based Determination of Solid-State Nanopore Size and Shape: An Exploration of Performance Limits. , 2012, The journal of physical chemistry. C, Nanomaterials and interfaces.

[87]  Andreas Bund,et al.  Effect of Surface Charge on the Resistive Pulse Waveshape during Particle Translocation through Glass Nanopores , 2014 .

[88]  S. Jacobson,et al.  Single-Particle Electrophoresis in Nanochannels , 2014, Analytical chemistry.

[89]  M. Drndić,et al.  Nanopore analysis of individual RNA/antibiotic complexes. , 2011, ACS nano.

[90]  M. Mayer,et al.  Noise and bandwidth of current recordings from submicrometer pores and nanopores. , 2008, ACS nano.

[91]  Jongyoon Han,et al.  Electrical detection of fast reaction kinetics in nanochannels with an induced flow. , 2007, Nano letters.

[92]  C. Dekker,et al.  Surface-charge-governed ion transport in nanofluidic channels. , 2004, Physical review letters.

[93]  Ryuji Hatsuki,et al.  Direct measurement of electric double layer in a nanochannel by electrical impedance spectroscopy , 2013 .

[94]  Y. Pershin,et al.  DNA characterization by transverse electrical current in a nanochannel. , 2012, Methods in molecular biology.

[95]  M. Ventra Fast DNA sequencing by electrical means inches closer. , 2013 .

[96]  L. Sohn,et al.  A resistive-pulse sensor chip for multianalyte immunoassays. , 2005, Lab on a chip.

[97]  J. Brugger,et al.  Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[98]  Zuzanna S Siwy,et al.  Biosensing with nanofluidic diodes. , 2009, Journal of the American Chemical Society.

[99]  Gregory W. Bishop,et al.  Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. , 2007, Journal of the American Chemical Society.

[100]  Bo Zhang,et al.  Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. , 2010, Nano letters.

[101]  A novel method to study single‐particle dynamics by the resistive pulse technique , 1989 .

[102]  A. Majumdar,et al.  Polarity switching and transient responses in single nanotube nanofluidic transistors. , 2005, Physical review letters.

[103]  Salvador Mafe,et al.  Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[104]  L. A. Baker,et al.  Nanopore DNA sensors based on dendrimer-modified nanopipettes. , 2009, Chemical communications.

[105]  Lydia L. Sohn,et al.  Direct detection of antibody–antigen binding using an on-chip artificial pore , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[106]  S. Jacobson,et al.  Characterization of hepatitis B virus capsids by resistive-pulse sensing. , 2011, Journal of the American Chemical Society.

[107]  G. Willmott,et al.  Nanoparticle ζ-potential measurements using tunable resistive pulse sensing with variable pressure. , 2014, Journal of colloid and interface science.

[108]  S. Jacobson,et al.  Effect of conical nanopore diameter on ion current rectification. , 2009, The journal of physical chemistry. B.

[109]  Wen-Jie Lan,et al.  Diffusional motion of a particle translocating through a nanopore. , 2012, ACS nano.

[110]  M. Langecker,et al.  A pore-cavity-pore device to trap and investigate single nanoparticles and DNA molecules in a femtoliter compartment: confined diffusion and narrow escape. , 2011, Nano letters.

[111]  Marc Gershow,et al.  Recapturing and trapping single molecules with a solid-state nanopore. , 2007, Nature nanotechnology.

[112]  L. Berge Dissolution of air bubbles by the resistive pulse and the pressure reversal technique , 1990 .

[113]  M. Reed,et al.  Field-effect reconfigurable nanofluidic ionic diodes. , 2011, Nature communications.

[114]  Reinhard Neumann,et al.  Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes. , 2009, Journal of the American Chemical Society.

[115]  Gregory D. Buckner,et al.  Design and demonstration of a novel micro-Coulter counter utilizing liquid metal electrodes , 2012 .

[116]  J. Zhai,et al.  Calcein-modified multinanochannels on PET films for calcium-responsive nanogating. , 2014, ACS applied materials & interfaces.

[117]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[118]  L. Ceseracciu,et al.  Modulating DNA Translocation by a Controlled Deformation of a PDMS Nanochannel Device , 2012, Scientific Reports.

[119]  L. Fruk,et al.  Optical Gating of Photosensitive Synthetic Ion Channels , 2012 .

[120]  J. Ramsey,et al.  Electrokinetically-driven transport of DNA through focused ion beam milled nanofluidic channels. , 2013, Analytical chemistry.

[121]  M. Taniguchi,et al.  Single-nanoparticle detection using a low-aspect-ratio pore. , 2012, ACS nano.

[122]  M. J. Kim,et al.  Chemical, Thermal, and Electric Field Induced Unfolding of Single Protein Molecules Studied Using Nanopores , 2022 .

[123]  R W DeBlois,et al.  Sizes and concentrations of several type C oncornaviruses and bacteriophage T2 by the resistive-pulse technique , 1977, Journal of virology.

[124]  G. Willmott,et al.  Resistive pulse asymmetry for nanospheres passing through tunable submicron pores , 2011 .

[125]  Gregory Timp,et al.  Direct visualization of single-molecule translocations through synthetic nanopores comparable in size to a molecule. , 2013, ACS nano.

[126]  Sheereen Majd,et al.  Controlling the translocation of proteins through nanopores with bioinspired fluid walls , 2011, Nature nanotechnology.

[127]  David W. McComb,et al.  DNA Tunneling Detector Embedded in a Nanopore , 2010, Nano letters.

[128]  C. P. Bean,et al.  Counting and Sizing of Submicron Particles by the Resistive Pulse Technique , 1970 .

[129]  Z. Siwy,et al.  Rectification of Ion Current in Nanopores Depends on the Type of Monovalent Cations: Experiments and Modeling , 2014, The journal of physical chemistry. C, Nanomaterials and interfaces.

[130]  Reinhard Neumann,et al.  Sequence-specific recognition of DNA oligomer using peptide nucleic acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment. , 2010, ACS nano.

[131]  R. Neumann,et al.  A pH-tunable nanofluidic diode with a broad range of rectifying properties. , 2009, ACS nano.

[132]  L. Lagae,et al.  Measuring the electric charge and zeta potential of nanometer-sized objects using pyramidal-shaped nanopores. , 2012, Analytical Chemistry.

[133]  George Anwar,et al.  Node-pore sensing: a robust, high-dynamic range method for detecting biological species. , 2013, Lab on a chip.

[134]  Reinhard Neumann,et al.  Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. , 2008, Journal of the American Chemical Society.

[135]  M. Drndić,et al.  Fabrication and characterization of nanopores with insulated transverse nanoelectrodes for DNA sensing in salt solution , 2012, Electrophoresis.

[136]  H. Postma,et al.  Rapid sequencing of individual DNA molecules in graphene nanogaps. , 2008, Nano letters.

[137]  Stephen W. Feldberg,et al.  Current Rectification at Quartz Nanopipet Electrodes , 1997 .

[138]  M. Taniguchi,et al.  Single-molecule sensing electrode embedded in-plane nanopore , 2011, Scientific reports.

[139]  M. Toimil-Molares,et al.  Polystyrene particles reveal pore substructure as they translocate. , 2012, ACS nano.

[140]  Wei Guo,et al.  A biomimetic zinc activated ion channel. , 2010, Chemical communications.

[141]  S. Jacobson,et al.  Electroosmotic Flow in Nanofluidic Channels , 2014, Analytical chemistry.

[142]  Y. Pershin,et al.  Effect of noise on DNA sequencing via transverse electronic transport. , 2009, Biophysical journal.

[143]  Mahmoud Almasri,et al.  Micromachined Coulter counter for dynamic impedance study of time sensitive cells , 2012, Biomedical Microdevices.

[144]  J. Betton,et al.  Sensing proteins through nanopores: fundamental to applications. , 2012, ACS chemical biology.

[145]  A. Majumdar,et al.  Rectification of ionic current in a nanofluidic diode. , 2007, Nano letters.

[146]  J. Joanny,et al.  Fast DNA translocation through a solid-state nanopore. , 2004, Nano letters.

[147]  H. E. Kubitschek,et al.  Electronic Counting and Sizing of Bacteria , 1958, Nature.

[148]  R. Karnik,et al.  Enhanced discrimination of DNA molecules in nanofluidic channels through multiple measurements. , 2012, Lab on a chip.

[149]  Ronald W Davis,et al.  Single DNA molecule detection using nanopipettes and nanoparticles. , 2005, Nano letters.

[150]  Xu Hou,et al.  A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. , 2009, Journal of the American Chemical Society.

[151]  C. R. Martin,et al.  An adsorption-based model for pulse duration in resistive-pulse protein sensing. , 2010, Journal of the American Chemical Society.

[152]  Alexander Y. Grosberg,et al.  Electrostatic Focusing of Unlabeled DNA into Nanoscale Pores using a Salt Gradient , 2009, Nature nanotechnology.

[153]  Reversible cobalt ion binding to imidazole-modified nanopipettes. , 2010, Analytical chemistry.

[154]  Z. Siwy,et al.  The role of pore geometry in single nanoparticle detection. , 2012, ACS nano.

[155]  A. Meller,et al.  Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis , 2006 .

[156]  R. Karnik,et al.  Investigating the translocation of λ-DNA molecules through PDMS nanopores , 2009, Analytical and bioanalytical chemistry.

[157]  Marc Gershow,et al.  DNA molecules and configurations in a solid-state nanopore microscope , 2003, Nature materials.

[158]  Yang Liu,et al.  Sensitive nanochannel biosensor for T4 polynucleotide kinase activity and inhibition detection. , 2013, Analytical chemistry.

[159]  L. Sohn,et al.  Correcting off-axis effects in an on-chip resistive-pulse analyzer , 2002 .

[160]  Ulrich F Keyser,et al.  Detecting DNA folding with nanocapillaries. , 2010, Nano letters.

[161]  Zuzanna Siwy,et al.  DNA-nanotube artificial ion channels. , 2004, Journal of the American Chemical Society.

[162]  Richard M. Crooks,et al.  Single Carbon Nanotube Membranes: A Well-Defined Model for Studying Mass Transport through Nanoporous Materials , 2000 .

[163]  Arun Majumdar,et al.  Effects of biological reactions and modifications on conductance of nanofluidic channels. , 2005, Nano letters.

[164]  S. Lindsay,et al.  Optical and electrical detection of single-molecule translocation through carbon nanotubes. , 2013, ACS nano.

[165]  Ronald W Davis,et al.  Label-free biosensing with functionalized nanopipette probes , 2009, Proceedings of the National Academy of Sciences.

[166]  Robert S. Eisenberg,et al.  Tuning transport properties of nanofluidic devices with local charge inversion. , 2009, Journal of the American Chemical Society.

[167]  J Michael Ramsey,et al.  Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. , 2011, Nano letters.

[168]  Z. Siwy,et al.  Nanopore analytics: sensing of single molecules. , 2009, Chemical Society reviews.

[169]  P. Price,et al.  Novel Filter for Biological Materials , 1964, Science.