On damage modelling for elastic and viscoelastic materials at large strain
暂无分享,去创建一个
L. Nasdala | H. Rothert | M. Kaliske | M. Kaliske | H. Rothert | L. Nasdala
[1] Alan Muhr,et al. Constitutive Models for Rubber , 1999 .
[2] J. Lemaître. How to use damage mechanics , 1984 .
[3] Christian Miehe,et al. Computation of isotropic tensor functions , 1993 .
[4] K. N. Morman. The Generalized Strain Measure With Application to Nonhomogeneous Deformations in Rubber-Like Solids , 1986 .
[5] Jean-Louis Chaboche,et al. Continuous damage mechanics — A tool to describe phenomena before crack initiation☆ , 1981 .
[6] L. Mullins. Softening of Rubber by Deformation , 1969 .
[7] J. Chaboche. Continuum Damage Mechanics: Part I—General Concepts , 1988 .
[8] D. J. Montgomery,et al. The physics of rubber elasticity , 1949 .
[9] Gert Heinrich,et al. Polymere Netzwerke : Entwicklungsstand der molekular-statistischen Theorie , 1995 .
[10] H. Rothert,et al. Formulation and implementation of three-dimensional viscoelasticity at small and finite strains , 1997 .
[11] R. Landel,et al. The Strain‐Energy Function of a Hyperelastic Material in Terms of the Extension Ratios , 1967 .
[12] Christian Miehe,et al. Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials , 1995 .
[13] Sanjay Govindjee,et al. Mullins' effect and the strain amplitude dependence of the storage modulus , 1992 .
[14] J. C. Simo,et al. On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects , 1987 .
[15] M. Kaliske,et al. An extended tube-model for rubber elasticity : Statistical-mechanical theory and finite element implementation , 1999 .
[16] J. C. Simo,et al. Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .
[17] M. Kaliske,et al. Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity , 1997 .