Quantum probabilistically cloning and computation

In this article we make a review on the usefulness of probabilistically cloning and present examples of quantum computation tasks for which quantum cloning offers an advantage which cannot be matched by any approach that does not resort to it. In these quantum computations, one needs to distribute quantum information contained in states about which we have some partial information. To perform quantum computations, one uses state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation. And we discuss the achievable efficiencies and the efficient quantum logic network for probabilistic cloning the quantum states used in implementing quantum computation tasks for which cloning provides enhancement in performance.

[1]  H. Bechmann-Pasquinucci,et al.  Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography , 1998, quant-ph/9807041.

[2]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[3]  Guo Guangcan,et al.  Linearly-Independent Quantum States Can Be Cloned by a Unitary-Reduct ion Operation , 1999 .

[4]  Gao Ting,et al.  Probabilistic Cloning and Quantum Computation , 2004 .

[5]  R. Werner OPTIMAL CLONING OF PURE STATES , 1998, quant-ph/9804001.

[6]  Ernesto F. Galvao,et al.  Foundations of quantum theory and quantum information applications , 2002 .

[7]  G. Guo,et al.  Probabilistic Cloning and Identification of Linearly Independent Quantum States , 1998, quant-ph/9804064.

[8]  Buzek,et al.  Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[9]  D. Bruß,et al.  Optimal universal and state-dependent quantum cloning , 1997, quant-ph/9705038.

[10]  M. Hillery,et al.  Controlling the flow of information in quantum cloners: Asymmetric cloning , 1998 .

[11]  Guang-Can Guo,et al.  Linearly-independent quantum states can be cloned , 1997 .

[12]  S. Massar,et al.  Optimal Quantum Cloning Machines , 1997, quant-ph/9705046.

[13]  D. Dieks Communication by EPR devices , 1982 .

[14]  Lucien Hardy,et al.  Cloning and quantum computation , 2000 .

[15]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .

[16]  Nicolas Gisin Quantum cloning without signaling , 1998 .

[17]  C. Macchiavello,et al.  Optimal state estimation for d-dimensional quantum systems☆ , 1998, quant-ph/9812016.

[18]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[19]  Achievable efficiencies for probabilistically cloning the states , 2003, quant-ph/0307186.

[20]  R. Feynman Simulating physics with computers , 1999 .

[21]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[22]  Nicolas J. Cerf,et al.  Asymmetric quantum cloning in any dimension , 1998, quant-ph/9805024.

[23]  D. Bruß,et al.  Optimal Universal Quantum Cloning and State Estimation , 1997, quant-ph/9712019.

[24]  Kai Wen,et al.  Quantum secure direct communication and deterministic secure quantum communication , 2007 .

[25]  R. Werner,et al.  Optimal cloning of pure states, testing single clones , 1998, quant-ph/9807010.

[26]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[27]  Yan Feng-Li,et al.  Quantum Logic Network for Probabilistic Cloning Quantum States , 2005 .

[28]  M. Hillery,et al.  Quantum copying: A network , 1997 .