ANN-based forecasting of hydropower reservoir inflow

Reservoir inflow forecasting with artificial neural networks is presented in this paper. Different types of ANN input data were considered such as temperature, precipitation and historical water inflow. Performance of the hourly inflow forecasts was assessed based on a case study of a specific hydropower reservoir in Latvia. The results showed that all the approaches had similar prediction errors implying that for optimal hydropower scheduling uncertainties need to be modelled which is also proposed in this study through generation of several forecast realisations in addition to point predictions.