Multimodularity and Its Applications in Three Stochastic Dynamic Inventory Problems

We apply the concept of multimodularity in three stochastic dynamic inventory problems in which state and decision variables are economic substitutes. The first is clearance sales of perishable goods. The second is sourcing from multiple suppliers with different lead times. The third is transshipment under capacity constraints. In all three problems, we establish monotone optimal polices with bounded sensitivity. Multimodularity proves to be an effective tool for these problems because it implies substitutability, it is preserved under minimization, and it leads directly to monotone optimal policies with bounded sensitivity.

[1]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[2]  Bruce E. Hajek,et al.  Extremal Splittings of Point Processes , 1985, Math. Oper. Res..

[3]  Steven Nahmias,et al.  Optimal Ordering Policies for Perishable Inventory - II , 1975, Oper. Res..

[4]  Geert-Jan van Houtum,et al.  Optimal lateral transshipment policy for a two location inventory problem , 2009 .

[5]  Brant E. Fries,et al.  Optimal Ordering Policy for a Perishable Commodity with Fixed Lifetime , 1975, Oper. Res..

[6]  Genaro J. Gutierrez,et al.  A periodic review inventory system with two supply modes , 1996 .

[7]  Thomas E. Morton,et al.  Near Myopic Heuristics for the Fixed-Life Perishability Problem , 1993 .

[8]  Paul H. Zipkin On the Structure of Lost-Sales Inventory Models , 2008, Oper. Res..

[9]  Marcel F. Neuts,et al.  An Inventory Model with an Optional Time Lag , 1964 .

[10]  Brigitte Maier,et al.  Supermodularity And Complementarity , 2016 .

[11]  Yoichiro Fukuda Optimal disposal policies , 1961 .

[12]  R. Phillips,et al.  Pricing and Revenue Optimization , 2005 .

[13]  Frank Y. Chen,et al.  Technical Note - A Note on the Structure of Joint Inventory-Pricing Control with Leadtimes , 2012, Oper. Res..

[14]  Michael Z. F. Li,et al.  Monotone optimal control for a class of Markov decision processes , 2012, Eur. J. Oper. Res..

[15]  Xiuli Chao,et al.  Technical Note - Optimal Control Policy for Capacitated Inventory Systems with Remanufacturing , 2013, Oper. Res..

[16]  G. E. Marttn An optimal decision model for disposal of perishable inventories , 1986 .

[17]  Jing-Sheng Song,et al.  On properties of discrete (r, q) and (s, T) inventory systems , 2013, Eur. J. Oper. Res..

[18]  Tava Lennon Olsen,et al.  Inventory Control with Generalized Expediting , 2010, Oper. Res..

[19]  Izak Duenyas,et al.  Optimal Joint Inventory and Transshipment Control Under Uncertain Capacity , 2005, Oper. Res..

[20]  J. Birge,et al.  Optimal Portfolio of Reconfigurable and Dedicated Capacity under Uncertainty , 2002 .

[21]  X. Chao,et al.  Dynamic Pricing and Inventory Management with Dual Suppliers of Different Lead Times and Disruption Risks , 2014 .

[22]  James E. Smith,et al.  Structural Properties of Stochastic Dynamic Programs , 2002, Oper. Res..

[23]  Xin Chen,et al.  Technical Note - Preservation of Supermodularity in Parametric Optimization Problems with Nonlattice Structures , 2013, Oper. Res..

[24]  Kazuo Murota,et al.  Note on Multimodularity and L-Convexity , 2005, Math. Oper. Res..

[25]  Alan Scheller-Wolf,et al.  Now or Later: A Simple Policy for Effective Dual Sourcing in Capacitated Systems , 2008, Oper. Res..

[26]  A. Whittemore,et al.  Optimal Inventory Under Stochastic Demand with Two Supply Options , 1977 .

[27]  Xiuli Chao,et al.  Dynamic pricing and inventory management with regular and expedited supplies , 2014 .

[28]  David D. Yao,et al.  Monotone Optimal Control of Permutable GSMPs , 1994, Math. Oper. Res..

[29]  Alexandar Angelus,et al.  A Multiechelon Inventory Problem with Secondary Market Sales , 2011, Manag. Sci..

[30]  Jian Yang,et al.  Capacitated Production Control with Virtual Lateral Transshipments , 2007, Oper. Res..

[31]  Suresh P. Sethi,et al.  Are Base-Stock Policies Optimal in Inventory Problems with Multiple Delivery Modes? , 2006, Oper. Res..

[32]  Xin Chen,et al.  Coordinating Inventory Control and Pricing Strategies for Perishable Products , 2014, Oper. Res..

[33]  Yingdong Lu,et al.  Order-Based Cost Optimization in Assemble-to-Order Systems , 2005, Oper. Res..

[34]  Kazuo Murota,et al.  MATHEMATICAL ENGINEERING TECHNICAL REPORTS Recent Developments in Discrete Convex Analysis , 2008 .

[35]  Yoichiro Fukuda Optimal Policies for the Inventory Problem with Negotiable Leadtime , 1964 .

[36]  R. Weber,et al.  Optimal control of service rates in networks of queues , 1987, Advances in Applied Probability.

[37]  David Simchi-Levi,et al.  Coordinating inventory control and pricing strategies: The continuous review model , 2006, Oper. Res. Lett..

[38]  Woonghee Tim Huh,et al.  On the Optimal Policy Structure in Serial Inventory Systems with Lost Sales , 2010, Oper. Res..

[39]  Sridhar Seshadri,et al.  New Policies for the Stochastic Inventory Control Problem with Two Supply Sources , 2010, Oper. Res..

[40]  Frank Y. Chen,et al.  A Note on the Structure of Joint Inventory-Pricing Control with Lead Times. , 2012 .

[41]  Eitan Altman,et al.  Multimodularity, Convexity, and Optimization Properties , 2000, Math. Oper. Res..