CO2 wettability of seal and reservoir rocks and the implications for carbon geo‐sequestration

We review the literature data published on the topic of CO2 wettability of storage and seal rocks. We first introduce the concept of wettability and explain why it is important in the context of carbon geo-sequestration (CGS) projects, and review how it is measured. This is done to raise awareness of this parameter in the CGS community, which, as we show later on in this text, may have a dramatic impact on structural and residual trapping of CO2. These two trapping mechanisms would be severely and negatively affected in case of CO2-wet storage and/or seal rock. Overall, at the current state of the art, a substantial amount of work has been completed, and we find that: Sandstone and limestone, plus pure minerals such as quartz, calcite, feldspar, and mica are strongly water wet in a CO2-water system. Oil-wet limestone, oil-wet quartz, or coal is intermediate wet or CO2 wet in a CO2-water system. The contact angle alone is insufficient for predicting capillary pressures in reservoir or seal rocks. The current contact angle data have a large uncertainty. Solid theoretical understanding on a molecular level of rock-CO2-brine interactions is currently limited. In an ideal scenario, all seal and storage rocks in CGS formations are tested for their CO2 wettability. Achieving representative subsurface conditions (especially in terms of the rock surface) in the laboratory is of key importance but also very challenging.

[1]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.

[2]  Andreas Busch,et al.  Experimental investigation of the sealing capacity of generic clay-rich caprocks , 2013 .

[3]  D. Y. Yoon,et al.  Structure and properties of polymethylene melt surfaces from molecular dynamics simulations , 2001 .

[4]  L. R. Van Loon,et al.  Preferred orientations and anisotropy in shales: Callovo-Oxfordian shale (France) and Opalinus Clay (Switzerland) , 2008 .

[5]  D. Wildenschild,et al.  X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems , 2013 .

[6]  H. Bertin,et al.  Interfacial tension measurements and wettability evaluation for geological CO2 storage , 2009 .

[7]  J. Bruining,et al.  Capillary pressure for the sand–CO2–water system under various pressure conditions. Application to CO2 sequestration , 2007 .

[8]  Martin J. Blunt,et al.  Residual CO2 imaged with X‐ray micro‐tomography , 2011 .

[9]  R. Lenhard,et al.  Experimental observations of nonaqueous-phase liquid subsurface movement , 1993 .

[10]  John Killough,et al.  Reservoir Simulation With History-Dependent Saturation Functions , 1976 .

[11]  K. Johnston,et al.  Wetting phenomena at the CO2/water/glass interface. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[12]  Christopher A. Rochelle,et al.  The IEA Weyburn CO2 monitoring and storage project : final report of the European research team , 2005 .

[13]  M. Blunt,et al.  Pore-scale imaging and modelling , 2013 .

[14]  H. J. Welge Displacement of Oil from Porous Media by Water or Gas , 1949 .

[15]  Norman R. Morrow,et al.  Physics and Thermodynamics of Capillary Action in Porous Media , 1970 .

[16]  Martin J. Blunt,et al.  The impact of wettability and connectivity on relative permeability in carbonates: A pore network modeling analysis , 2012 .

[17]  J. Grate,et al.  Correlation of oil-water and air-water contact angles of diverse silanized surfaces and relationship to fluid interfacial tensions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[18]  Carlon S. Land,et al.  Calculation of Imbibition Relative Permeability for Two- and Three-Phase Flow From Rock Properties , 1968 .

[19]  Tae Wook Kim,et al.  Capillary pressure saturation relations supercritical CO2 and brine in sand: High-pressure Pc(Sw) controller/meter measurements and capillary scaling predictions , 2013 .

[20]  Sally M. Benson,et al.  Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions , 2011 .

[21]  Bernhard M. Krooss,et al.  Gas breakthrough experiments on fine‐grained sedimentary rocks , 2002 .

[22]  J. Mahadevan Comments on the paper titled “Contact angle measurements of CO2–water-quartz/calcite systems in the perspective of carbon sequestration”: A case of contamination? , 2012 .

[23]  C Gallé,et al.  Gas breakthrough pressure in compacted Fo–Ca clay and interfacial gas overpressure in waste disposal context , 2000 .

[24]  Eduardo Manrique,et al.  EOR Field Experiences in Carbonate Reservoirs in the United States , 2007 .

[25]  Clare E. Bond,et al.  Structural models: Optimizing risk analysis by understanding conceptual uncertainty , 2008 .

[26]  Karsten Pruess,et al.  Leakage of CO2 from geologic storage: Role of secondary accumulation at shallow depth , 2007 .

[27]  W. A. Bruce,et al.  Evaluation Of Capillary Character In Petroleum Reservoir Rock , 1949 .

[28]  W. Purcell Interpretation of Capillary Pressure Data , 1950 .

[29]  T. Matsuoka,et al.  Molecular Dynamics Simulations of the CO2-Water-silica Interfacial Systems , 2013 .

[30]  L. T. Zhuravlev The surface chemistry of amorphous silica. Zhuravlev model , 2000 .

[31]  W. W. Owens,et al.  A Laboratory Evaluation of the Wettability of Fifty Oil-Producing Reservoirs , 1972 .

[32]  Gianni Schena,et al.  X-ray tomography measurements of power-law cluster size distributions for the nonwetting phase in sandstones. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  J. A. Hafford,et al.  Laboratory Determination of Relative Permeability , 1952 .

[34]  Christopher Juhlin,et al.  The Geology of the CO2SINK Site: From Regional Scale to Laboratory Scale , 2009 .

[35]  D. Broseta,et al.  Are rocks still water‐wet in the presence of dense CO2 or H2S? , 2012 .

[36]  S. Li,et al.  Gas breakthrough pressure for hydrocarbon reservoir seal rocks: implications for the security of long‐term CO2 storage in the Weyburn field , 2005 .

[37]  Front dynamics of supercritical non‐Boussinesq gravity currents , 2006 .

[38]  Y. Kharaka Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I brine pilot , 2010 .

[39]  K. Bjørlykke Petroleum Geoscience: From Sedimentary Environments to Rock Physics , 2011 .

[40]  J. .. Habbottle Anisotropic irradiation creep of zircaloy-2 , 1978 .

[41]  M. Blunt,et al.  Capillary-Trapping Capacity of Sandstones and Sandpacks , 2011 .

[42]  Masahiro Nishio,et al.  Solubility of CO2 in aqueous solutions of NaCl at (30 to 60) °C and (10 to 20) MPa , 2003 .

[43]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[44]  C. Feenstra,et al.  Stakeholder participation practices and onshore CCS: Lessons from the dutch CCS case barendrecht , 2011 .

[45]  A. N. Sabirzyanov,et al.  Solubility of Water in Supercritical Carbon Dioxide , 2002 .

[46]  R. R. Berg,et al.  Capillary Pressures in Stratigraphic Traps , 1975 .

[47]  Paitoon Tontiwachwuthikul,et al.  Wettability Determination of the Reservoir Brine−Reservoir Rock System with Dissolution of CO2 at High Pressures and Elevated Temperatures , 2008 .

[48]  K. H. Ebert,et al.  Grenzflächenspannungen, Tropfengrößen und Kontaktwinkel im Zweiphasensystem H2O/CO2 bei Temperaturen von 298 bis 333 K und Drücken bis 30 MPa , 1997 .

[49]  K. Johnston,et al.  Contact angle of water on polystyrene thin films: effects of CO(2) environment and film thickness. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[50]  M. Blunt,et al.  Laboratory investigation of capillary trapping under mixed‐wet conditions , 2013 .

[51]  J. Buckley,et al.  Mechanisms of Wetting Alteration by Crude Oils , 1998 .

[52]  Rex D. Thomas,et al.  Wettability Determination and Its Effect on Recovery Efficiency , 1969 .

[53]  Sally M. Benson,et al.  Simultaneous determination of capillary pressure and relative permeability curves from core‐flooding experiments with various fluid pairs , 2013 .

[54]  Karsten Pruess,et al.  Formation dry‐out from CO2 injection into saline aquifers: 1. Effects of solids precipitation and their mitigation , 2009 .

[55]  Kenneth A. Brakke,et al.  The Physics of Microdroplets: Berthier/The Physics , 2012 .

[56]  Stevia Sutanto,et al.  Cleanability of Textile Materials in Liquid CO2 , 2012 .

[57]  D. Broseta,et al.  Evaluation of petrophysical properties of a carbonate-rich caprock for CO2 geological storage purposes , 2010 .

[58]  A. Kovscek,et al.  A Study of Microscale Gas Trapping Using Etched Silicon Micromodels , 2012, Transport in Porous Media.

[59]  Bert Metz,et al.  Carbon Dioxide Capture and Storage , 2005 .

[60]  T. Hosokawa,et al.  Maximization of capillary trapping ratio to injected CO2 by means of co-injection , 2011 .

[61]  M. C. Leverett,et al.  Capillary Behavior in Porous Solids , 1941 .

[62]  J. Wan,et al.  Supercritical CO2 and Ionic Strength Effects on Wettability of Silica Surfaces: Equilibrium Contact Angle Measurements , 2012 .

[63]  A. Busch,et al.  Caprock and overburden processes in geological CO2 storage: An experimental study on sealing efficiency and mineral alterations , 2009 .

[64]  E. C. Childs Dynamics of fluids in Porous Media , 1973 .

[65]  Hans Bruining,et al.  Pressure dependence of the contact angle in a CO2-H2O-coal system. , 2006, Journal of colloid and interface science.

[66]  S. M. Mahmood Relative-Permeability Measurements: An Overview , 1997 .

[67]  Sally M. Benson,et al.  Microtomography and Pore-Scale Modeling of Two-Phase Fluid Distribution , 2011 .

[68]  Tim T. Schowalter Mechanics of Secondary Hydrocarbon Migration and Entrapment , 1979 .

[69]  Frieder Enzmann,et al.  Real-time 3D imaging of Haines jumps in porous media flow , 2013, Proceedings of the National Academy of Sciences.

[70]  I. Fatt The Network Model of Porous Media , 1956 .

[71]  T. Lee,et al.  Contact Angle and Wetting Properties , 2013 .

[72]  Ruben Juanes,et al.  A New Model of Trapping and Relative Permeability Hysteresis for All Wettability Characteristics , 2008 .

[73]  J. Vakros,et al.  Potentiometric Mass Titrations: Experimental and Theoretical Establishment of a New Technique for Determining the Point of Zero Charge (PZC) of Metal (Hydr)Oxides , 2003 .

[74]  Andreas Busch,et al.  Carbon dioxide storage potential of shales , 2008 .

[75]  W. Anderson Wettability Literature Survey-Part 6: The Effects of Wettability on Waterflooding , 1987 .

[76]  Erik Lindeberg,et al.  Vertical convection in an aquifer column under a gas cap of CO2 , 1997 .

[77]  Stefan Iglauer,et al.  Dissolution Trapping of Carbon Dioxide in Reservoir Formation Brine – A Carbon Storage Mechanism , 2011 .

[78]  A. Busch,et al.  Predicting capillarity of mudrocks , 2013 .

[79]  Jon F. Harrington,et al.  Gas migration in clay barriers , 1999 .

[80]  George E. Hoag,et al.  GASOLINE RESIDUAL SATURATION IN UNSATURATED UNIFORM AQUIFER MATERIALS , 1986 .

[81]  Olaf Kolditz,et al.  The CLEAN project in the context of CO2 storage and enhanced gas recovery , 2012, Environmental Earth Sciences.

[82]  P. Jaeger,et al.  Interfacial phenomena of aqueous systems in dense carbon dioxide , 2008 .

[83]  Sally M. Benson,et al.  An Experimental Study on the Influence of Sub-Core Scale Heterogeneities on CO2 Distribution in Reservoir Rocks , 2010 .

[84]  M. Blunt,et al.  Residual CO2 trapping in Indiana limestone. , 2013, Environmental science & technology.

[85]  M. Blunt,et al.  Measurements of the capillary trapping of super‐critical carbon dioxide in Berea sandstone , 2011 .

[86]  Shuyan Liu,et al.  Molecular dynamics simulation of wetting behavior at CO2/water/solid interfaces , 2010 .

[87]  Irina Gaus,et al.  Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks , 2010 .

[88]  Shibo Wang,et al.  CO2 adhesion on hydrated mineral surfaces. , 2013, Environmental science & technology.

[89]  Bernhard M. Krooss,et al.  Gas breakthrough experiments on pelitic rocks: comparative study with N2, CO2 and CH4 , 2004 .

[90]  W. Anderson Wettability literature survey - Part 4: Effects of wettability on capillary pressure , 1987 .

[91]  S. Bachu,et al.  Permeability and Relative Permeability Measurements at Reservoir Conditions for CO2-Water Systems in Ultra Low Permeability Confining Caprocks , 2007 .

[92]  J. G. Roof Snap-Off of Oil Droplets in Water-Wet Pores , 1970 .

[93]  Mingzhe Dong,et al.  CO2 sequestration in depleted oil and gas reservoirs—caprock characterization and storage capacity , 2006 .

[94]  S. Iglauer,et al.  Molecular dynamics computations of brine-CO2 interfacial tensions and brine-CO2-quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration. , 2012, Journal of colloid and interface science.

[95]  Martin J. Blunt,et al.  Measurement of Nonwetting-Phase Trapping in Sandpacks , 2010 .

[96]  N. Morrow,et al.  Effect of Wettability on Waterflood Recovery for Crude-Oil/Brine/Rock Systems , 1995 .

[97]  M. Piri,et al.  The effects of SO2 contamination, brine salinity, pressure, and temperature on dynamic contact angles and interfacial tension of supercritical CO2/brine/quartz systems , 2014 .

[98]  J. Carlos Santamarina,et al.  Water‐CO2‐mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage , 2010 .

[99]  E. Amott Observations Relating to the Wettability of Porous Rock , 1959 .

[100]  Bernhard M. Krooss,et al.  Experimental characterisation of the hydrocarbon sealing efficiency of cap rocks , 1997 .

[101]  J. Birkholzer,et al.  Basin-scale hydrogeologic impacts of CO2 storage: Capacity and regulatory implications , 2009 .

[102]  E. Boek,et al.  Interfacial Tension of (Brines + CO2): (0.864 NaCl + 0.136 KCl) at Temperatures between (298 and 448) K, Pressures between (2 and 50) MPa, and Total Molalities of (1 to 5) mol·kg–1 , 2012 .

[103]  Helge Stanjek,et al.  Experimental investigation of the CO2 sealing efficiency of caprocks , 2010 .

[104]  John Ralston,et al.  Experimental investigations of the wettability of clays and shales , 2009 .

[105]  D. Longeron,et al.  Water-Oil Capillary Pressure and Wettability Measurements Using Micropore Membrane Technique , 1995 .

[106]  M. J. Oak,et al.  Three-phase relative permeability of Berea sandstone , 1990 .

[107]  L. Girifalco,et al.  A THEORY FOR ESTIMATION OF SURFACE AND INTERFACIAL ENERGIES. III. ESTIMATION OF SURFACE ENERGIES OF SOLIDS FROM CONTACT ANGLE DATA , 1960 .

[108]  Pierre Chiquet,et al.  Wettability alteration of caprock minerals by carbon dioxide , 2007 .

[109]  Patrick Egermann,et al.  An Integrated Approach to Parameterize Reservoir Models for CO2 Injection in Aquifers , 2006 .

[110]  Sally M. Benson,et al.  Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions , 2012 .

[111]  Kuldeep Chaudhary,et al.  Pore‐scale trapping of supercritical CO2 and the role of grain wettability and shape , 2013 .

[112]  Axel Liebscher,et al.  Petrophysical analysis to investigate the effects of carbon dioxide storage in a subsurface saline aquifer at Ketzin, Germany (CO2SINK) , 2010 .

[113]  Andrew C. Aplin,et al.  Experimental measurement of, and controls on, permeability and permeability anisotropy of caprocks from the CO2 storage project at the Krechba Field, Algeria , 2011 .

[114]  Chi M. Phan,et al.  Contamination of silica surfaces: Impact on water–CO2–quartz and glass contact angle measurements , 2014 .

[115]  Morteza Akbarabadi,et al.  Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: An experimental study at reservoir conditions , 2013 .

[116]  Martin J. Blunt,et al.  Pore‐scale imaging of geological carbon dioxide storage under in situ conditions , 2013 .

[117]  Sevket Durucan,et al.  Supercritical CO2 core flooding and imbibition in Tako sandstone—Influence of sub-core scale heterogeneity , 2011 .

[118]  Prem Kumar Bikkina,et al.  WITHDRAWN: Contact angle measurements of CO2–water–quartz/calcite systems in the perspective of carbon sequestration , 2011 .

[119]  Mark Wilkinson,et al.  Long-term performance of a mudrock seal in natural CO2 storage , 2009 .

[120]  Stefan Bachu,et al.  Drainage and Imbibition Relative Permeability Relationships for Supercritical CO2/Brine and H2S/Brine Systems in Intergranular Sandstone, Carbonate, Shale, and Anhydrite Rocks , 2008 .

[121]  S. Nooner,et al.  Ten years' experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway , 2008 .

[122]  A. Busch,et al.  Interaction of carbon dioxide with Na-exchanged montmorillonite at pressures to 640 bars: Implications for CO2 sequestration , 2012 .

[123]  Andrew C. Aplin,et al.  Diagenetic and sedimentary controls on porosity in Lower Carboniferous fine-grained lithologies, Krechba field, Algeria: A petrological study of a caprock to a carbon capture site , 2010 .

[124]  D. W. Bennion,et al.  The Effect OfWettability On Two-Phase Relative Penneabilities , 1974 .

[125]  M. Blunt,et al.  Comparison of residual oil cluster size distribution, morphology and saturation in oil-wet and water-wet sandstone. , 2012, Journal of colloid and interface science.

[126]  I. Gaus,et al.  Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea) , 2005 .

[127]  Dat Vu-Hoang,et al.  Lithological and Petrophysical Core-Log Interpretation in CO2SINK, the European CO2 Onshore Research , 2010 .

[128]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[129]  Hamdi A. Tchelepi,et al.  Gravity currents with residual trapping , 2008, Journal of Fluid Mechanics.

[130]  N. Morrow Wettability and Its Effect on Oil Recovery , 1990 .

[131]  H. G. Botset Flow of Gas-liquid Mixtures through Consolidated Sand , 1940 .

[132]  M. Blunt,et al.  Prediction of Wettability Variation Within an Oil/Water Transition Zone and Its Impact on Production , 2005 .

[133]  Martin J Blunt,et al.  Pore-network extraction from micro-computerized-tomography images. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[134]  Matthew D. Jackson,et al.  Prediction of wettability variation and its impact on flow using pore- to reservoir-scale simulations , 2003 .

[135]  K. Jordan,et al.  Molecular Dynamics Simulations of Carbon Dioxide Intercalation in Hydrated Na-Montmorillonite , 2013 .

[136]  J. Wan,et al.  Capillary Pressure and Mineral Wettability Influences on Reservoir CO2 Capacity , 2013 .

[137]  S. Iglauer,et al.  Molecular Dynamics Simulation of Water/CO2-quartz Interfacial Properties: Application to Subsurface Gas Injection , 2013 .

[138]  Seyed Nezameddin Ashrafizadeh,et al.  Wettability determination by contact angle measurements: hvbB coal-water system with injection of synthetic flue gas and CO2. , 2011, Journal of colloid and interface science.

[139]  Nicolaus Dahmen,et al.  Interfacial Tension at Elevated PressuresMeasurements and Correlations in the Water + Carbon Dioxide System , 2002 .

[140]  R. Juncosa,et al.  Injection of CO2-saturated water through a siliceous sandstone plug from the Hontomin test site (Spain): experiment and modeling. , 2013, Environmental science & technology.

[141]  P. Bikkina Reply to the comments on “Contact angle measurements of CO2–water–quartz/calcite systems in the perspective of carbon sequestration” , 2012 .

[142]  N. L. Watts,et al.  Theoretical aspects of cap-rock and fault seals for single- and two-phase hydrocarbon columns , 1987 .

[143]  Karsten Pruess,et al.  On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir , 2008 .

[144]  K. Wolf,et al.  Wettability Evaluation of a CO2/Water/Bentheimer Sandstone System: Contact Angle, Dissolution, and Bubble Size , 2014 .

[145]  Mark A. Knackstedt,et al.  3D characterisation of potential CO2 reservoir and seal rocks , 2013 .

[146]  Michael Andrew Christie,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[147]  Shibo Wang,et al.  Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration. , 2013, Environmental science & technology.

[148]  E.S.J. Rudolph,et al.  Effect of coal petrology and pressure on wetting properties of wet coal for CO2 and flue gas storage , 2012 .

[149]  Edward Bormashenko,et al.  The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon , 2008 .

[150]  M. Blunt,et al.  Nonwetting phase residual saturation in sand packs , 2010 .

[151]  Jill S. Buckley,et al.  Asphaltenes and Crude Oil Wetting - The Effect of Oil Composition , 1997 .

[152]  Owain Tucker,et al.  Development of an Offshore Monitoring Plan for a Commercial CO2 Storage Pilot , 2013 .

[153]  Espen Jettestuen,et al.  A level set method for simulating capillary‐controlled displacements at the pore scale with nonzero contact angles , 2013 .

[154]  S. Benson,et al.  Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks , 2013 .

[155]  E. Boek,et al.  Interfacial Tension of (Brines+CO2): CaCl2(aq), MgCl2(aq), and Na2SO4(aq) at Temperatures between (343 and 423) K, Pressures between (2 and 50) MPa, and Molalities of (0.5 to 5) mol.kg-1 , 2012 .

[156]  W. Hardy,et al.  III. The spreading of fluids on glass , 1919 .

[157]  P. G. de Gennes,et al.  A model for contact angle hysteresis , 1984 .

[158]  W. Zisman,et al.  Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids☆ , 1946 .

[159]  S. Benson,et al.  Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions , 2011 .

[160]  Shibo Wang,et al.  The effects of CO2‐brine rheology on leakage processes in geologic carbon sequestration , 2012 .

[161]  F. Schönfeld,et al.  Dynamic contact angles in CFD simulations , 2009 .

[162]  E. A. Müller,et al.  Mesoscopic Simulation of Aggregation of Asphaltene and Resin Molecules in Crude Oils , 2005, Energy & Fuels.

[163]  Timothy J Kneafsey,et al.  Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels. , 2012, Environmental science & technology.

[164]  L. Dake Fundamentals of Reservoir Engineering , 1983 .

[165]  D. B. Stewart,et al.  The IEA Weyburn CO2 Monitoring and Storage Project , 2003 .

[166]  A. Schwartz CAPILLARITY - THEORY AND PRACTICE , 1969 .

[167]  A. Busch,et al.  Importance of mineral surface areas in Rotliegend sandstones for modeling CO2–water–rock interactions , 2014 .

[168]  M. Piri,et al.  Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[169]  Osamu Nishizawa,et al.  Effect of sub-core scale heterogeneity on relative permeability curves of porous sandstone in a water-supercritical CO2 system , 2013 .

[170]  E. Stenby,et al.  Interpretation of capillary pressure curves using invasion percolation theory , 1993 .

[171]  N. Morrow Capillary Pressure Correlations For Uniformly Wetted Porous Media , 1976 .

[172]  Ali Ebrahimi,et al.  Genetic algorithm-based pore network extraction from micro-computed tomography images , 2013 .

[173]  Hauser Ea,et al.  Interfacial tension at elevated pressures and temperatures; a new and improved apparatus for boundary-tension measurements by the pendent-drop method. , 1948 .

[174]  Daniel Y. Kwok,et al.  Contact angle measurement and contact angle interpretation , 1999 .

[175]  N. Wardlaw,et al.  The influence of wettability and critical pore-throat size ratio on snap—off , 1986 .

[176]  Donald L. Katz,et al.  Threshold pressure phenomena in porous media , 1968 .

[177]  Robert N. Wenzel,et al.  Surface Roughness and Contact Angle. , 1949 .

[178]  Iain Wright,et al.  Plume development around well KB-502 at the In Salah CO2 storage site , 2009 .

[179]  H. Ott,et al.  Displacement and mass transfer between saturated and unsaturated CO2–brine systems in sandstone , 2013 .

[180]  Martin J. Blunt,et al.  Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography , 2014 .

[181]  Ruben Juanes,et al.  Impact of relative permeability hysteresis on geological CO2 storage , 2006 .

[182]  S. Carroll,et al.  Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions , 2011, Geochemical transactions.

[183]  Martin J. Blunt,et al.  Carbon dioxide in enhanced oil recovery , 1993 .

[184]  Ole Torsæter,et al.  Wettability behaviour of CO2 at storage conditions , 2013 .

[185]  Carl I. Steefel,et al.  Measurement of accessible reactive surface area in a sandstone, with application to CO2 mineralization , 2012 .

[186]  P. Gennes,et al.  Capillarity and Wetting Phenomena , 2004 .

[187]  Jianguo Zhang,et al.  Measurement of the Sealing Capacity of Shale Caprocks , 2005 .