Immunocytochemical Localization of the GABACReceptor ρ Subunits in the Mammalian Retina

Polyclonal antibodies against the N terminus of the rat ρ1 subunit were generated to study the distribution of GABAC receptors in the mammalian retina. The specificity of the antibodies was tested in Western blots and transfected HEK-293 cells. No cross-reactivity with the GABAA receptor subunits α1–3, β1–3, γ2, δ or with the glycine receptor subunits α1 and β could be detected. In contrast, the ρ1, ρ2, and ρ3 subunits were all recognized by the antibodies. In vertical sections of rat, rabbit, cat, and macaque monkey retinae, strong punctate immunoreactivity was present in the inner plexiform layer. Weaker immunoreactivity was also present in the outer plexiform layer, and cell bodies of bipolar cells were faintly labeled. Double immunostaining of vertical sections and immunostaining of dissociated rat retinae showed the punctate immunofluorescence to colocalize with bipolar cell axon terminals. The puncta possibly represent clustering of the ρ subunits at postsynaptic sites.

[1]  H. Wässle,et al.  Glutamate Responses of Bipolar Cells in a Slice Preparation of the Rat Retina , 1996, The Journal of Neuroscience.

[2]  R. Shingai,et al.  Cloning of a putative γ-aminobutyric acid (GABA) receptor subunit ϱ3 cDNA , 1996 .

[3]  S. Lipton,et al.  Cloning of a gamma-aminobutyric acid type C receptor subunit in rat retina with a methionine residue critical for picrotoxinin channel block. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  G. Uhl,et al.  GABA rho1 receptor: inhibition by protein kinase C activators. , 1995, European journal of pharmacology.

[5]  J. Dowling,et al.  GABAA and GABAC receptors on hybrid bass retinal bipolar cells. , 1995, Journal of neurophysiology.

[6]  H. Wässle,et al.  Immunocytochemical identification of cone bipolar cells in the rat retina , 1995, The Journal of comparative neurology.

[7]  M. Slaughter,et al.  Preferential suppression of the ON pathway by GABAC receptors in the amphibian retina. , 1995, Journal of neurophysiology.

[8]  R. Masland,et al.  A population of wide‐field bipolar cells in the rabbit's retina , 1995, The Journal of comparative neurology.

[9]  R. Shingai,et al.  Identification of GABAA Receptor Subunits in Rat Retina: Cloning of the Rat GABAA Receptor ρ2‐Subunit cDNA , 1995, Journal of neurochemistry.

[10]  R. Dacheux,et al.  GABA- and glycine-activated currents in the rod bipolar cell of the rabbit retina. , 1995, Journal of neurophysiology.

[11]  H. Wässle,et al.  Expression of GABA Receptor ρ1 and ρ2 Subunits in the Retina and Brain of the Rat , 1995 .

[12]  W. Sieghart,et al.  Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. , 1995, Pharmacological reviews.

[13]  J. Bormann,et al.  Expression of glycine receptor subunits and gephyrin in single bipolar cells of the rat retina , 1995, Visual Neuroscience.

[14]  M. Darlison,et al.  Localization of the ρ1- and ρ2-subunit messenger RNAs in chick retina by in situ hybridization predicts the existence of γ-aminobutyric acid type C receptor subtypes , 1995, Neuroscience Letters.

[15]  S A Lipton,et al.  Multiple GABA receptor subtypes mediate inhibition of calcium influx at rat retinal bipolar cell terminals , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  H. Wässle,et al.  GABAA Receptor subunits have differential distributions in the rat retinae: In situ hybridization and immunohistochemistry , 1995, The Journal of comparative neurology.

[17]  E. Cherubini,et al.  Whole cell and single channel properties of a new GABA receptor transiently expressed in the Hippocampus. , 1995, Journal of neurophysiology.

[18]  A. Feigenspan,et al.  Differential pharmacology of GABAA and GABAC receptors on rat retinal bipolar cells. , 1994, European journal of pharmacology.

[19]  A. Feigenspan,et al.  Modulation of GABAC receptors in rat retinal bipolar cells by protein kinase C. , 1994, The Journal of physiology.

[20]  A. Feigenspan,et al.  Facilitation of GABAergic signaling in the retina by receptors stimulating adenylate cyclase. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  G. Cutting,et al.  A novel gamma-aminobutyric acid receptor subunit (rho 2) cloned from human retina forms bicuculline-insensitive homooligomeric receptors in Xenopus oocytes , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  E. Cherubini,et al.  Transient expression of a novel type of GABA response in rat CA3 hippocampal neurones during development. , 1994, The Journal of physiology.

[23]  Heinz Wässle,et al.  Immunocytochemical analysis of bipolar cells in the macaque monkey retina , 1994, The Journal of comparative neurology.

[24]  H. Yeh,et al.  Vasoactive intestinal polypeptide modulates GABAA receptor function through activation of cyclic AMP , 1994, Visual Neuroscience.

[25]  H. Wässle,et al.  Glycinergic synapses in the rod pathway of the rat retina: cone bipolar cells express the alpha 1 subunit of the glycine receptor , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  J. Dowling,et al.  Pharmacology of novel GABA receptors found on rod horizontal cells of the white perch retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  F. Werblin,et al.  GABA transporters and GABAC-like receptors on catfish cone- but not rod- driven horizontal cells , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  H. Yeh,et al.  Expression profiling of GABAA receptor β-subunits in the rat retina , 1994, Visual Neuroscience.

[29]  F S Werblin,et al.  A novel GABA receptor on bipolar cell terminals in the tiger salamander retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  H. Wässle,et al.  Immunocytochemical localization of glycine receptors in the mammalian retina , 1993, The Journal of comparative neurology.

[31]  H. Wassle,et al.  Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  H. Wässle,et al.  Electron microscopic analysis of the rod pathway of the rat retina , 1993, The Journal of comparative neurology.

[33]  J. Fritschy,et al.  Neuron-specific expression of GABAA-receptor subtypes: Differential association of theα1- andα3-subunits with serotonergic and gabaergic neurons , 1993, Neuroscience.

[34]  G. Uhl,et al.  Pharmacology of GAB A ρ1 and GAB A α/β receptors expressed in Xenopus oocytes and COS cells , 1993 .

[35]  G. Uhl,et al.  GABA ρ2 receptor pharmacological profile: GABA recognition site similarities to ρ1 , 1993 .

[36]  H. Wässle,et al.  Localization of GABAA receptors in the rat retina , 1993, Visual Neuroscience.

[37]  H. Wässle,et al.  Pharmacology of GABA receptor CI− channels in rat retinal bipolar cells , 1993, Nature.

[38]  John E. Dowling,et al.  Novel GABA responses from rod- driven retinal horizontal cells , 1993, Nature.

[39]  D. Dacey,et al.  Recoverin immunoreactivity in mammalian cone bipolar cells , 1993, Visual Neuroscience.

[40]  S. Massey,et al.  Morphology of bipolar cells labeled by DAPI in the rabbit retina , 1992, The Journal of comparative neurology.

[41]  P. Sterling,et al.  Immunoreactivity to GABAA receptor in the outer plexiform layer of the cat retina , 1992, The Journal of comparative neurology.

[42]  H. Yeh,et al.  Vasoactive intestinal polypeptide modulates GABAA receptor function in bipolar cells and ganglion cells of the rat retina. , 1992, Journal of neurophysiology.

[43]  G. Uhl,et al.  gamma-Aminobutyric acid A or C receptor? gamma-Aminobutyric acid rho 1 receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive gamma-aminobutyric acid responses in Xenopus oocytes. , 1992, Molecular pharmacology.

[44]  H. Zoghbi,et al.  Identification of a putative gamma-aminobutyric acid (GABA) receptor subunit rho2 cDNA and colocalization of the genes encoding rho2 (GABRR2) and rho1 (GABRR1) to human chromosome 6q14-q21 and mouse chromosome 4. , 1992, Genomics.

[45]  G. Johnston,et al.  Bicuculline‐ and Baclofen‐Insensitive γ‐Aminobutyric Acid Binding to Rat Cerebellar Membranes , 1992 .

[46]  P. Seeburg,et al.  A prominent epitope on GABAA receptors is recognized by two different monoclonal antibodies , 1992, Brain Research.

[47]  L. Sivilotti,et al.  GABA receptor mechanisms in the central nervous system , 1991, Progress in Neurobiology.

[48]  B. Boycott,et al.  Morphological Classification of Bipolar Cells of the Primate Retina , 1991, The European journal of neuroscience.

[49]  PR Martin,et al.  Rod bipolar cells in the macaque monkey retina: immunoreactivity and connectivity , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  A. Trzeciak,et al.  Identification and immunohistochemical mapping of GABAA receptor subtypes containing the δ‐subunit in rat brain , 1991 .

[51]  R. Miledi,et al.  Expression of mammalian gamma-aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[52]  S. Antonarakis,et al.  Cloning of the gamma-aminobutyric acid (GABA) rho 1 cDNA: a GABA receptor subunit highly expressed in the retina. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[53]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[54]  H. Karten,et al.  GABAA receptors in the retina of the cat: An immunohistochemical study of wholemounts, sections, and dissociated cells , 1991, Visual Neuroscience.

[55]  C. Becker,et al.  Mapping of antigenic epitopes on the alpha 1 subunit of the inhibitory glycine receptor. , 1991, Biochemistry.

[56]  P Sterling,et al.  Demonstration of cell types among cone bipolar neurons of cat retina. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[57]  P Sterling,et al.  Convergence and divergence of cones onto bipolar cells in the central area of cat retina. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  F. Stephenson,et al.  The gamma 2 subunit is an integral component of the gamma-aminobutyric acidA receptor but the alpha 1 polypeptide is the principal site of the agonist benzodiazepine photoaffinity labeling reaction. , 1990, The Journal of biological chemistry.

[59]  Ursula Greferath,et al.  Rod bipolar cells in the mammalian retina show protein kinase C‐like immunoreactivity , 1990, The Journal of comparative neurology.

[60]  E. Strettoi,et al.  Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina , 1990, The Journal of comparative neurology.

[61]  J. J. Sando,et al.  Differential activation of protein kinase C isozymes by short chain phosphatidylserines and phosphatidylcholines. , 1990, The Journal of biological chemistry.

[62]  H. Wässle,et al.  Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina. , 1990, Journal of neurophysiology.

[63]  A. Kaneko,et al.  Effects of glycine and GABA on isolated bipolar cells of the mouse retina. , 1990, The Journal of physiology.

[64]  N. Bowery GABAB receptors and their significance in mammalian pharmacology. , 1989, Trends in pharmacological sciences.

[65]  P. Seeburg,et al.  Two novel GABAA receptor subunits exist in distinct neuronal subpopulations , 1989, Neuron.

[66]  A. Draguhn,et al.  GABAA receptor beta subunit heterogeneity: functional expression of cloned cDNAs. , 1989, The EMBO journal.

[67]  L. Sivilotti,et al.  Pharmacology of a novel effect of γ-aminobutyric acid on the frog optic tectum in vitro , 1989 .

[68]  J. Bormann Electrophysiology of GABAA and GABAB receptor subtypes , 1988, Trends in Neurosciences.

[69]  H. Wässle,et al.  Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase and gamma-aminobutyrate immunoreactivity. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[70]  H. Young,et al.  GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina , 1988, Brain Research.

[71]  S. Massey,et al.  Transmitter circuits in the vertebrate retina , 1987, Progress in Neurobiology.

[72]  H. Okayama,et al.  High-efficiency transformation of mammalian cells by plasmid DNA. , 1987, Molecular and cellular biology.

[73]  H. Okayama,et al.  High-efficiency transformation of mammalian cells by plasmid DNA , 1987 .

[74]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[75]  R. Pourcho,et al.  A combined Golgi and autoradiographic study of 3H-glycine-accumulating cone bipolar cells in the cat retina , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  B. Sakmann,et al.  Mechanism of anion permeation through channels gated by glycine and gamma‐aminobutyric acid in mouse cultured spinal neurones. , 1987, The Journal of physiology.

[77]  P. Sterling,et al.  Molecular specificity of defined types of amacrine synapse in cat retina , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  L. Sivilotti,et al.  An unusual effect of γ‐aminobutyric acid on synaptic transmission of frog tectal neurones in vitro , 1985, British journal of pharmacology.

[79]  W. Haefely,et al.  Co-localization of GABAA receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies , 1985, Nature.

[80]  R. Weatherby,et al.  Bicuculline-insensitive GABA receptors: Studies on the binding of (−)-baclofen to rat cerebellar membranes , 1984, Neuroscience Letters.

[81]  P Sterling,et al.  Microcircuitry of bipolar cells in cat retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  F. Pfeiffer,et al.  Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[83]  E. V. Famiglietti,et al.  Functional architecture of cone bipolar cells in mammalian retina , 1981, Vision Research.

[84]  Helga Kolb,et al.  Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study , 1981, Vision Research.

[85]  D. R. Curtis,et al.  CIS‐ AND TRANS‐4‐AMINOCROTONIC ACID AS GABA ANALOGUES OF RESTRICTED CONFORMATION , 1975, Journal of neurochemistry.

[86]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[87]  Y. Ozoe GABA A Receptor Channels , 1996 .

[88]  H. Wässle,et al.  Expression of GABA receptor rho 1 and rho 2 subunits in the retina and brain of the rat. , 1995, The European journal of neuroscience.

[89]  R. Olsen,et al.  GABAA receptor channels. , 1994, Annual review of neuroscience.

[90]  G. Johnston GABAC receptors. , 1994, Progress in brain research.

[91]  A. Trzeciak,et al.  GABAA-receptors: drug binding profile and distribution of receptors containing the alpha 2-subunit in situ. , 1993, Journal of receptor research.

[92]  N. Brecha Expression of GABAA receptors in the vertebrate retina. , 1992, Progress in brain research.

[93]  A. Ishida The physiology of GABAA receptors in retinal neurons. , 1992, Progress in brain research.

[94]  H. Mohler,et al.  Immunochemical identification of the alpha 1- and alpha 3-subunits of the GABAA-receptor in rat brain. , 1991, Journal of receptor research.

[95]  D. I. Vaney,et al.  Chapter 2 The mosaic of amacrine cells in the mammalian retina , 1990 .

[96]  H. Hofmann,et al.  Tetanus toxin binding to isolated and cultured rat retinal glial cells , 1988, Glia.

[97]  C. W. Oyster,et al.  Identification and characterization of tyrosine hydroxylase immunoreactive amacrine cells. , 1984, Investigative ophthalmology & visual science.