Core‐Substituted Naphthalenediimides: LUMO Levels Revisited, in Comparison with Preylenediimides with Sulfur Redox Switches in the Core

Abstract Core‐substituted naphthalenediimides (NDIs) attract increasing attention to bind, transport, and transform electrons, anions, anionic intermediates, and anionic transition states, and to shine as most colorful rainbow fluorophores. The energy level of their lowest unoccupied molecular orbital (LUMO) is decisive for many of these applications. Here, differential pulse voltammetry (DPV) measurements for a consistent series of NDIs are reported to extract exact LUMO levels under identical conditions. The influence of primary and secondary substituents in the core and on the primary imides is compared with general trends for the reliable prediction of LUMO levels in functional systems. Emphasis is on sulfur redox switches in the NDI core because of their frequent use as isostructural probes for π acidity. The same sulfur redox chemistry is expanded to perylenediimides (PDIs), and LUMO engineering is discussed in a broader context, including also fullerenes, aminonaphthalimides (ANIs), and aminoperyleneimides (APIs). The result is a comprehensive reference table that graphically maps out the LUMO space covered by the leading families of electronaccepting aromatics. This graphical summary of general trends in the π‐acidic space is expected to be both inspiring and quite useful in practice.

[1]  Gevorg Sargsyan,et al.  Enolate Stabilization by Anion-π Interactions: Deuterium Exchange in Malonate Dilactones on π-Acidic Surfaces. , 2016, Chemistry.

[2]  David Schmidt,et al.  Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. , 2016, Chemical reviews.

[3]  D. Bonifazi,et al.  Templated Chromophore Assembly by Dynamic Covalent Bonds. , 2015, Angewandte Chemie.

[4]  E. Vauthey,et al.  Turn-On Sulfide π Donors: An Ultrafast Push for Twisted Mechanophores. , 2015, Journal of the American Chemical Society.

[5]  L. Gade,et al.  Arylmercapto Substituted Tetraazaperopyrene Derivatives and Their Oxidation to Tetrasulfones: Photophysics and Electrochemistry. , 2015, The Journal of organic chemistry.

[6]  Karteek K. Bejagam,et al.  Autoresolution of Segregated and Mixed p-n Stacks by Stereoselective Supramolecular Polymerization in Solution. , 2015, Angewandte Chemie.

[7]  J. Parquette,et al.  A self-assembled nanotube for the direct aldol reaction in water. , 2015, Chemical communications.

[8]  De‐Xian Wang,et al.  Self-Assembly and Disassembly of Vesicles as Controlled by Anion-π Interactions. , 2015, Angewandte Chemie.

[9]  S. Matile,et al.  Asymmetric Anion-π Catalysis: Enamine Addition to Nitroolefins on π-Acidic Surfaces. , 2015, Journal of the American Chemical Society.

[10]  S. Matile,et al.  Selective acceleration of disfavored enolate addition reactions by anion–π interactions† †Electronic supplementary information (ESI) available: Detailed procedures and results for all reported experiments. See DOI: 10.1039/c5sc02563j , 2015, Chemical science.

[11]  Antonio Bauzá,et al.  The bright future of unconventional σ/π-hole interactions. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  T. Wesołowski,et al.  Ion Pair-π Interactions. , 2015, Journal of the American Chemical Society.

[13]  K. Rissanen,et al.  Anion-π Interactions with Fluoroarenes. , 2015, Chemical reviews.

[14]  Qichun Zhang,et al.  From non-detectable to decent: replacement of oxygen with sulfur in naphthalene diimide boosts electron transport in organic thin-film transistors (OTFT) , 2015 .

[15]  S. Matile,et al.  Complex Functional Systems with Three Different Types of Dynamic Covalent Bonds. , 2015, Angewandte Chemie.

[16]  Suhrit Ghosh,et al.  Hydrogen-bond-regulated distinct functional-group display at the inner and outer wall of vesicles. , 2015, Angewandte Chemie.

[17]  Yongsheng Chen,et al.  A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells , 2015 .

[18]  E. Vauthey,et al.  Electron-deficient fullerenes in triple-channel photosystems. , 2015, Chemical communications.

[19]  S. Matile,et al.  Big, strong, neutral, twisted, and chiral π acids. , 2015, Chemistry.

[20]  N. Demitri,et al.  Rational synthesis of AB-type N-substituted core-functionalized naphthalene diimides (cNDIs). , 2015, Organic letters.

[21]  B. Beno,et al.  A Survey of the Role of Noncovalent Sulfur Interactions in Drug Design. , 2015, Journal of medicinal chemistry.

[22]  T. Bell,et al.  Unexpected photoluminescence of fluorinated naphthalene diimides. , 2015, Chemistry.

[23]  E. Derivery,et al.  Fluorescent Flippers for Mechanosensitive Membrane Probes , 2015, Journal of the American Chemical Society.

[24]  S. Matile,et al.  Surface architectures built around perylenediimide stacks. , 2014, Chemistry.

[25]  K. Ohkubo,et al.  Submillisecond-lived photoinduced charge separation in a fully conjugated phthalocyanine–perylenebenzimidazole dyad , 2014 .

[26]  Sharvan Kumar,et al.  Extraordinary stability of naphthalenediimide radical ion and its ultra-electron-deficient precursor: strategic role of the phosphonium group. , 2014, Journal of the American Chemical Society.

[27]  F. Würthner,et al.  Strategies for the synthesis of functional naphthalene diimides. , 2014, Angewandte Chemie.

[28]  F. Würthner,et al.  Strategien für die Synthese funktioneller Naphthalindiimide , 2014 .

[29]  T. Deming,et al.  Multimodal switching of conformation and solubility in homocysteine derived polypeptides. , 2014, Journal of the American Chemical Society.

[30]  S. Matile,et al.  Ion-gated synthetic photosystems. , 2014, Journal of the American Chemical Society.

[31]  R. Nigon,et al.  Two-fold odd-even effect in self-assembled nanowires from oligopeptide-polymer-substituted perylene bisimides. , 2014, Journal of the American Chemical Society.

[32]  A. Das,et al.  Supramolekulare Anordnungen mit Charge‐Transfer‐Wechselwirkungen zwischen Donor‐ und Akzeptor‐Chromophoren , 2014 .

[33]  Suhrit Ghosh,et al.  Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores. , 2014, Angewandte Chemie.

[34]  D. Quiñonero,et al.  Thermodynamic characterization of halide-π interactions in solution using "two-wall" aryl extended calix[4]pyrroles as model system. , 2014, Journal of the American Chemical Society.

[35]  S. Matile,et al.  Anion-π catalysis. , 2014, Journal of the American Chemical Society.

[36]  A. Bretschneider,et al.  Preorganized anion traps for exploiting anion-π interactions: an experimental and computational study. , 2013, Chemistry.

[37]  Severin T. Schneebeli,et al.  Electron sharing and anion-π recognition in molecular triangular prisms. , 2013, Angewandte Chemie.

[38]  L. Zakharov,et al.  Selective nitrate binding in competitive hydrogen bonding solvents: do anion-π interactions facilitate nitrate selectivity? , 2013, Angewandte Chemie.

[39]  S. Matile,et al.  Catalysis with anion-π interactions. , 2013, Angewandte Chemie.

[40]  T. Govindaraju,et al.  Molecular Architectonics of Stereochemically Constrained π‐Complementary Functional Modules , 2013 .

[41]  Klaus Bergander,et al.  Noncovalent interactions in organocatalysis: modulating conformational diversity and reactivity in the MacMillan catalyst. , 2013, Angewandte Chemie.

[42]  Christian Mück‐Lichtenfeld,et al.  Nichtbindende Wechselwirkungen in der Organokatalyse: Modulierung konformativer Diversität und Reaktivität im MacMillan‐Katalysator , 2013 .

[43]  P. Ballester Experimental quantification of anion-π interactions in solution using neutral host-guest model systems. , 2013, Accounts of chemical research.

[44]  D. Dougherty The cation-π interaction. , 2013, Accounts of chemical research.

[45]  S. Matile,et al.  Transmembrane halogen-bonding cascades. , 2013, Journal of the American Chemical Society.

[46]  K. Dunbar,et al.  Anion-π interactions in supramolecular architectures. , 2013, Accounts of chemical research.

[47]  Henning Sirringhaus,et al.  Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm² V(-1) s(-1). , 2013, Journal of the American Chemical Society.

[48]  De‐Xian Wang,et al.  Anion-π interactions: generality, binding strength, and structure. , 2013, Journal of the American Chemical Society.

[49]  Jie Zhang,et al.  Stepwise cyanation of naphthalene diimide for n-channel field-effect transistors. , 2012, Organic letters.

[50]  S. Matile,et al.  Enantioselective self-sorting on planar, π-acidic surfaces of chiral anion-π transporters , 2012 .

[51]  R. Häner,et al.  The DNA three-way junction as a mould for tripartite chromophore assembly. , 2012, Organic & biomolecular chemistry.

[52]  Maarten M. J. Smulders,et al.  Thermodynamics of supramolecular naphthalenediimide nanotube formation: the influence of solvents, side chains, and guest templates. , 2012, Journal of the American Chemical Society.

[53]  A. Frontera,et al.  Putting anion-π interactions into perspective. , 2011, Angewandte Chemie.

[54]  J. Reedijk,et al.  Anion‐π‐Wechselwirkungen ins rechte Licht gerückt , 2011 .

[55]  E. Tippmann,et al.  Probing eudesmane cation-π interactions in catalysis by aristolochene synthase with non-canonical amino acids. , 2011, Journal of the American Chemical Society.

[56]  Stefan Matile,et al.  Lateral self-sorting on surfaces: a practical approach to double-channel photosystems. , 2011, Journal of the American Chemical Society.

[57]  Stefan Matile,et al.  Self-organizing surface-initiated polymerization: facile access to complex functional systems. , 2011, Journal of the American Chemical Society.

[58]  M. Chudziński,et al.  Anion receptors composed of hydrogen- and halogen-bond donor groups: modulating selectivity with combinations of distinct noncovalent interactions. , 2011, Journal of the American Chemical Society.

[59]  F. Würthner,et al.  Naphthalene and perylene diimides for organic transistors. , 2011, Chemical communications.

[60]  Mark A Ratner,et al.  Rylene and Related Diimides for Organic Electronics , 2011, Advanced materials.

[61]  D. Quiñonero,et al.  Relevant anion-π interactions in biological systems: the case of urate oxidase. , 2011, Angewandte Chemie.

[62]  S. Matile,et al.  A chiral and colorful redox switch: enhanced π acidity in action. , 2010, Angewandte Chemie.

[63]  T. Fukushima,et al.  Use of side-chain incompatibility for tailoring long-range p/n heterojunctions: photoconductive nanofibers formed by self-assembly of an amphiphilic donor-acceptor dyad consisting of oligothiophene and perylenediimide. , 2010, Chemistry, an Asian journal.

[64]  Stefan Matile,et al.  Core-substituted naphthalenediimides. , 2010, Chemical communications.

[65]  E. Jacobsen,et al.  Enantioselective thiourea-catalyzed cationic polycyclizations. , 2010, Journal of the American Chemical Society.

[66]  M. Wasielewski,et al.  Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. , 2009, Accounts of chemical research.

[67]  Jurriaan Huskens,et al.  Ordered and oriented supramolecular n/p-heterojunction surface architectures: completion of the primary color collection. , 2009, Journal of the American Chemical Society.

[68]  P. E. Keivanidis,et al.  Improved Performance of Perylene-Based Photovoltaic Cells Using Polyisocyanopeptide Arrays , 2009 .

[69]  Alexander D. Q. Li,et al.  Tunable molecular assembly codes direct reaction pathways. , 2008, Angewandte Chemie.

[70]  S. Matile,et al.  Boronic acid converters for reactive hydrazide amplifiers: polyphenol sensing in green tea with synthetic pores. , 2008, Journal of the American Chemical Society.

[71]  H. Wagenknecht,et al.  Perylene bisimide dimers as fluorescent "glue" for DNA and for base-mismatch detection. , 2008, Angewandte Chemie.

[72]  H. Wagenknecht,et al.  Perylenbisimid‐Dimere als fluoreszenter “Klebstoff” für DNA und zum Nachweis von Basenfehlpaarungen , 2008 .

[73]  S. Langford,et al.  Chemistry of naphthalene diimides. , 2008, Chemical Society reviews.

[74]  S. Matile,et al.  Rigid oligonaphthalenediimide rods as transmembrane anion-pi slides. , 2006, Journal of the American Chemical Society.

[75]  Sheshanath V. Bhosale,et al.  Photoproduction of Proton Gradients with π-Stacked Fluorophore Scaffolds in Lipid Bilayers , 2006, Science.

[76]  S. Matile,et al.  Ligand-gated synthetic ion channels. , 2005, Chemistry.

[77]  Zhijian Chen,et al.  Supramolecular p-n-heterojunctions by co-self-organization of oligo(p-phenylene vinylene) and perylene bisimide dyes. , 2004, Journal of the American Chemical Society.

[78]  Frank Würthner,et al.  Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. , 2004, Chemical communications.

[79]  G. J. Gabriel,et al.  Aromatic oligomers that form hetero duplexes in aqueous solution. , 2002, Journal of the American Chemical Society.

[80]  T. Debaerdemaeker,et al.  Core-substituted naphthalene bisimides: new fluorophors with tunable emission wavelength for FRET studies. , 2002, Chemistry.

[81]  S. Matile,et al.  Electrostatics of cell membrane recognition: structure and activity of neutral and cationic rigid push-pull rods in isoelectric, anionic, and polarized lipid bilayer membranes. , 2001, Journal of the American Chemical Society.

[82]  S. Gellman,et al.  Redox control of secondary structure in a designed peptide , 1993 .

[83]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[84]  N. D. Epiotis,et al.  The .pi. donating ability of heteroatoms , 1977 .

[85]  N. Champness,et al.  Effects of pore modification on the templating of guest molecules in a 2D honeycomb network , 2012 .

[86]  Supplemental figures and legends , 2011 .