The molecular basis of excitation and adaptation during chemotactic sensory transduction in bacteria.

Chemotaxis is the process by which cells sense chemical gradients in their environment and then move towards more favorable conditions. In the case of Escherichia coli, the paradigm organism for chemotaxis, the pathway is now arguably the best characterized in all of biology. If one broadens their perspective to include other species of bacteria, then our knowledge of chemotaxis is far less developed. In particular, the chemotaxis pathways in unrelated species are quite different despite the conservation of many core signaling proteins. Here, we summarize the current state of knowledge regarding the chemotaxis pathways in E. coli and Bacillus subtilis, with a specific focus on the mechanisms for excitation and adaptation. The mechanisms vary widely, and the B. subtilis process, similar to those found in Thermotoga maritima and many archaea, may represent a new paradigm for bacterial chemotaxis. For instance, B. subtilis has three interacting means for restoring prestimulus behavior after stimulation, including one involving CheYp feedback. The one shared with E. coli, the receptor methylation system, is vastly different, as is the mechanism for conveying signals across the membrane.

[1]  R. Bourret,et al.  Chemotactic response regulator mutant CheY95IV exhibits enhanced binding to the flagellar switch and phosphorylation‐dependent constitutive signalling , 1998, Molecular microbiology.

[2]  D. Koshland,et al.  Role of the CheW protein in bacterial chemotaxis: overexpression is equivalent to absence , 1989, Journal of bacteriology.

[3]  J. Adler,et al.  Failure of sensory adaptation in bacterial mutants that are defective in a protein methylation reaction , 1978, Cell.

[4]  Andrei N. Lupas,et al.  The HAMP Domain Structure Implies Helix Rotation in Transmembrane Signaling , 2006, Cell.

[5]  M. Eisenbach,et al.  Acetylation of the response regulator, CheY, is involved in bacterial chemotaxis , 2001, Molecular microbiology.

[6]  Judith P Armitage,et al.  Requirements for chemotaxis protein localization in Rhodobacter sphaeroides , 2005, Molecular microbiology.

[7]  J G Pelton,et al.  Crystal Structure of Activated CheY , 2001, The Journal of Biological Chemistry.

[8]  H. Berg,et al.  Both CheA and CheW are required for reconstitution of chemotactic signaling in Escherichia coli , 1989, Journal of bacteriology.

[9]  G. Ordal,et al.  Phosphorylation of the Response Regulator CheV Is Required for Adaptation to Attractants during Bacillus subtilisChemotaxis* , 2001, The Journal of Biological Chemistry.

[10]  B. P. McNamara,et al.  Coexpression of the long and short forms of CheA, the chemotaxis histidine kinase, by members of the family Enterobacteriaceae , 1997, Journal of bacteriology.

[11]  G. Ordal,et al.  Purification and reconstitution of the methyl-accepting chemotaxis proteins from Bacillus subtilis. , 1993, Biochimica et biophysica acta.

[12]  R. Bourret,et al.  Purification and characterization of Bacillus subtilis CheY. , 1993, Biochemistry.

[13]  G. Ordal,et al.  Cloning and characterization of genes encoding methyl-accepting chemotaxis proteins in Bacillus subtilis. , 1994, The Journal of biological chemistry.

[14]  Gabriela Gonzalez-Bonet,et al.  Reconstruction of the chemotaxis receptor–kinase assembly , 2006, Nature Structural &Molecular Biology.

[15]  Sheng Zhang,et al.  A Receptor-Modifying Deamidase in Complex with a Signaling Phosphatase Reveals Reciprocal Regulation , 2006, Cell.

[16]  Robert B. Bourret,et al.  Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis , 1988, Nature.

[17]  F. Dahlquist,et al.  Stimulus-induced changes in methylesterase activity during chemotaxis in Escherichia coli. , 1984, The Journal of biological chemistry.

[18]  Karen Lipkow,et al.  Changing Cellular Location of CheZ Predicted by Molecular Simulations , 2006, PLoS Comput. Biol..

[19]  Dennis Bray,et al.  The Chemotactic Behavior of Computer-Based Surrogate Bacteria , 2007, Current Biology.

[20]  D. DeRosier,et al.  Self-assembly of receptor/signaling complexes in bacterial chemotaxis , 2006, Proceedings of the National Academy of Sciences.

[21]  J. Kirby,et al.  CheC is related to the family of flagellar switch proteins and acts independently from CheD to control chemotaxis in Bacillus subtilis , 2001, Molecular microbiology.

[22]  J. Adler,et al.  Protein methylation in behavioural control mechanisms and in signal transduction , 1979, Nature.

[23]  Gabriela Gonzalez-Bonet,et al.  Structure and function of an unusual family of protein phosphatases: the bacterial chemotaxis proteins CheC and CheX. , 2004, Molecular cell.

[24]  M. Hunkapiller,et al.  Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[25]  F W Dahlquist,et al.  Thermodynamic basis for the increased thermostability of CheY from the hyperthermophile Thermotoga maritima. , 2001, Biochemistry.

[26]  N. Dowidar,et al.  Identification of New Flagellar Genes of Salmonella enterica Serovar Typhimurium , 2006, Journal of bacteriology.

[27]  G. Ordal,et al.  Identification and characterization of FliY, a novel component of the Bacillus subtilis flagellar switch complex , 1992, Molecular microbiology.

[28]  Hendrik Szurmant,et al.  The role of heterologous receptors in McpB‐mediated signalling in Bacillus subtilis chemotaxis , 2002, Molecular microbiology.

[29]  M. Simon,et al.  Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Eisenbach,et al.  Correlation between phosphorylation of the chemotaxis protein CheY and its activity at the flagellar motor. , 1992, Biochemistry.

[31]  M. Eisenbach,et al.  Conserved C-terminus of the phosphatase CheZ is a binding domain for the chemotactic response regulator CheY. , 1996, Biochemistry.

[32]  Sebastian Thiem,et al.  Positioning of chemosensory clusters in E. coli and its relation to cell division , 2007, The EMBO journal.

[33]  S. Subramaniam,et al.  Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy , 2007, Proceedings of the National Academy of Sciences.

[34]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[35]  R. Stewart,et al.  CheZ mutants with enhanced ability to dephosphorylate CheY, the response regulator in bacterial chemotaxis. , 1993, Biochimica et biophysica acta.

[36]  J. Kirby,et al.  Chemotactic methylesterase promotes adaptation to high concentrations of attractant in Bacillus subtilis. , 1993, The Journal of biological chemistry.

[37]  P. Matsumura,et al.  A chemotactic signaling surface on CheY defined by suppressors of flagellar switch mutations , 1992, Journal of bacteriology.

[38]  S. Harayama,et al.  Mutants in transmission of chemotactic signals from two independent receptors of E. coli , 1979, Cell.

[39]  H. Szurmant,et al.  Bacillus subtilis Hydrolyzes CheY-P at the Location of Its Action, the Flagellar Switch* , 2003, Journal of Biological Chemistry.

[40]  Kenji Oosawa,et al.  Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis , 1988, Cell.

[41]  Wolfgang Marwan,et al.  Regulation of Switching Frequency and Bias of the Bacterial Flagellar Motor by CheY and Fumarate , 1998, Journal of bacteriology.

[42]  A. Wolfe,et al.  Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli. , 2004, Journal of molecular biology.

[43]  G. Ordal,et al.  Functional homology of Bacillus subtilis methyltransferase II and Escherichia coli cheR protein. , 1982, The Journal of biological chemistry.

[44]  H. Othmer,et al.  Dynamic receptor team formation can explain the high signal transduction gain in Escherichia coli. , 2003, Biophysical journal.

[45]  B. Zanolari,et al.  Ordered methylation of the methyl-accepting chemotaxis proteins of Escherichia coli. , 1982, Journal of Biological Chemistry.

[46]  M. Simon,et al.  Activation of the phosphosignaling protein CheY. I. Analysis of the phosphorylated conformation by 19F NMR and protein engineering. , 1993, The Journal of biological chemistry.

[47]  D. Koshland,et al.  Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. S. Parkinson,et al.  Collaborative signaling by mixed chemoreceptor teams in Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Homma,et al.  Chemotactic Adaptation Is Altered by Changes in the Carboxy-Terminal Sequence Conserved among the Major Methyl-Accepting Chemoreceptors , 1998, Journal of bacteriology.

[50]  J. S. Parkinson,et al.  Constitutively signaling fragments of Tsr, the Escherichia coli serine chemoreceptor , 1994, Journal of bacteriology.

[51]  H. Berg,et al.  Single-cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  V. Sourjik,et al.  Spatial organization of the bacterial chemotaxis system. , 2006, Current opinion in microbiology.

[53]  Igor B Zhulin,et al.  Aer and Tsr guide Escherichia coli in spatial gradients of oxidizable substrates. , 2003, Microbiology.

[54]  R. Bourret,et al.  Protein phosphorylation in the bacterial chemotaxis system. , 1989, Biochimie.

[55]  M. Simon,et al.  Mutations in the chemotactic response regulator, CheY, that confer resistance to the phosphatase activity of CheZ , 1995, Molecular microbiology.

[56]  G. Petsko,et al.  Structure of the Mg(2+)-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. , 1994, Biochemistry.

[57]  J. Kirby,et al.  CheY-dependent Methylation of the Asparagine Receptor, McpB, during Chemotaxis in Bacillus subtilis * , 1999, The Journal of Biological Chemistry.

[58]  F. Dahlquist,et al.  CheW Binding Interactions with CheA and Tar , 2002, The Journal of Biological Chemistry.

[59]  J. Adler Chemotaxis in Bacteria , 1966, Science.

[60]  J. Stock,et al.  Purification and characterization of the CheZ protein of bacterial chemotaxis , 1987, Journal of bacteriology.

[61]  J. Falke,et al.  Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity. , 2005, Biochemistry.

[62]  Johannes Goll,et al.  The protein network of bacterial motility , 2007 .

[63]  J. Falke,et al.  Mapping out regions on the surface of the aspartate receptor that are essential for kinase activation. , 2003, Biochemistry.

[64]  Ronald D Vale,et al.  Interactions of the chemotaxis signal protein CheY with bacterial flagellar motors visualized by evanescent wave microscopy , 2000, Current Biology.

[65]  K. Ottemann,et al.  Chemotaxis Plays Multiple Roles during Helicobacter pylori Animal Infection , 2005, Infection and Immunity.

[66]  F. Dahlquist,et al.  N-terminal half of CheB is involved in methylesterase response to negative chemotactic stimuli in Escherichia coli , 1988, Journal of bacteriology.

[67]  C. Rao,et al.  An allosteric model for transmembrane signaling in bacterial chemotaxis. , 2004, Journal of molecular biology.

[68]  H. Berg,et al.  Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions , 2000, Molecular microbiology.

[69]  J. Adler,et al.  Attractants and repellents control demethylation of methylated chemotaxis proteins in Escherichia coli. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[70]  B. Crane,et al.  Subunit exchange by CheA histidine kinases from the mesophile Escherichia coli and the thermophile Thermotoga maritima. , 2004, Biochemistry.

[71]  S. Chervitz,et al.  Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[72]  B. L. Taylor,et al.  CheA, CheW, and CheY are required for chemotaxis to oxygen and sugars of the phosphotransferase system in Escherichia coli , 1995, Journal of bacteriology.

[73]  D. Bray,et al.  Modelling the bacterial chemotaxis receptor complex. , 2002, Novartis Foundation symposium.

[74]  G. Ordal,et al.  Chemotactic repellents of Bacillus subtilis. , 1976, Journal of molecular biology.

[75]  D. Brown,et al.  Temporal stimulation of chemotaxis in Escherichia coli. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[76]  G. Ordal,et al.  Transmembrane organization of the Bacillus subtilis chemoreceptor McpB deduced by cysteine disulfide crosslinking. , 2003, Journal of molecular biology.

[77]  J. Stock,et al.  Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis. , 1990, Biochemistry.

[78]  I. Zhulin,et al.  Different Evolutionary Constraints on Chemotaxis Proteins CheW and CheY Revealed by Heterologous Expression Studies and Protein Sequence Analysis , 2003, Journal of bacteriology.

[79]  J. Adler,et al.  Negative Chemotaxis in Escherichia coli , 1974, Journal of bacteriology.

[80]  Laura Camarena,et al.  Biochemical Study of Multiple CheY Response Regulators of the Chemotactic Pathway of Rhodobacter sphaeroides , 2004, Journal of bacteriology.

[81]  G. Ordal,et al.  Receptor conformational changes enhance methylesterase activity during chemotaxis by Bacillus subtilis , 2003, Molecular microbiology.

[82]  J. Adler,et al.  Methylation of a membrane protein involved in bacterial chemotaxis. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[83]  D. Koshland,et al.  Reversible receptor methylation is essential for normal chemotaxis of Escherichia coli in gradients of aspartic acid. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[84]  J. Adler,et al.  Chemoreceptors in bacteria. , 1969, Science.

[85]  P. Matsumura,et al.  Mutations Leading to Altered CheA Binding Cluster on a Face of CheY (*) , 1995, The Journal of Biological Chemistry.

[86]  A. Lupas,et al.  Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. , 1989, The Journal of biological chemistry.

[87]  R. Bourret,et al.  CheX Is a Phosphorylated CheY Phosphatase Essential for Borrelia burgdorferi Chemotaxis , 2005, Journal of bacteriology.

[88]  Analysis of chimeric chemoreceptors in Bacillus subtilis reveals a role for CheD in the function of the McpC HAMP domain. , 2004, Journal of bacteriology.

[89]  J. Kirby,et al.  Chemotactic methylation and behavior in Bacillus subtilis: role of two unique proteins, CheC and CheD. , 1995, Biochemistry.

[90]  Ann M Stock,et al.  Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[91]  E. Ghelardi,et al.  Swarming motility in Bacillus cereus and characterization of a fliY mutant impaired in swarm cell differentiation. , 2002, Microbiology.

[92]  M. Simon,et al.  The dynamics of protein phosphorylation in bacterial chemotaxis , 1990, Cell.

[93]  R. Bourret,et al.  Catalytic mechanism of phosphorylation and dephosphorylation of CheY: kinetic characterization of imidazole phosphates as phosphodonors and the role of acid catalysis. , 1997, Biochemistry.

[94]  Jason E. Gestwicki,et al.  Inter-receptor communication through arrays of bacterial chemoreceptors , 2002, Nature.

[95]  G. Ordal,et al.  Amino acid chemoreceptors of Bacillus subtilis , 1977, Journal of bacteriology.

[96]  J. Stock,et al.  Crystal Structure of the CheA Histidine Phosphotransfer Domain that Mediates Response Regulator Phosphorylation in Bacterial Chemotaxis* , 2001, The Journal of Biological Chemistry.

[97]  J. Adler,et al.  Attractants and repellents influence methylation and demethylation of methyl-accepting chemotaxis proteins in an extract of Escherichia coli. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Shahid Khan,et al.  Binding of the Chemotaxis Response Regulator CheY to the Isolated, Intact Switch Complex of the Bacterial Flagellar Motor , 2003, Journal of Biological Chemistry.

[99]  K. Ottemann,et al.  Two Predicted Chemoreceptors of Helicobacter pylori Promote Stomach Infection , 2002, Infection and Immunity.

[100]  Laura Camarena,et al.  Chemotactic Control of the Two Flagellar Systems of Rhodobacter sphaeroides Is Mediated by Different Sets of CheY and FliM Proteins , 2007, Journal of bacteriology.

[101]  Judith P Armitage,et al.  In vivo and in vitro analysis of the Rhodobacter sphaeroides chemotaxis signaling complexes. , 2007, Methods in enzymology.

[102]  Orland R. Gonzalez,et al.  Metabolism of halophilic archaea , 2008, Extremophiles.

[103]  Judith P. Armitage,et al.  Polar Localization of CheA2 in Rhodobacter sphaeroides Requires Specific Che Homologs , 2003, Journal of bacteriology.

[104]  Y. Tu,et al.  Effects of receptor interaction in bacterial chemotaxis. , 2004, Biophysical journal.

[105]  G. Ordal,et al.  The CheC Phosphatase Regulates Chemotactic Adaptation through CheD* , 2007, Journal of Biological Chemistry.

[106]  Wolfgang Marwan,et al.  A quantitative model of the switch cycle of an archaeal flagellar motor and its sensory control. , 2005, Biophysical journal.

[107]  H. Berg,et al.  Physics of chemoreception. , 1977, Biophysical journal.

[108]  Judith P Armitage,et al.  The positioning of cytoplasmic protein clusters in bacteria. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[109]  M. Simon,et al.  The response regulators CheB and CheY exhibit competitive binding to the kinase CheA. , 1995, Biochemistry.

[110]  Characterization of the chemotaxis fli Y and che A genes in Bacillus cereus. , 2000, FEMS microbiology letters.

[111]  M. Simon,et al.  Structure of CheA, a Signal-Transducing Histidine Kinase , 1999, Cell.

[112]  M. Eisenbach,et al.  Co-regulation of acetylation and phosphorylation of CheY, a response regulator in chemotaxis of Escherichia coli. , 2004, Journal of molecular biology.

[113]  Judith P Armitage,et al.  The CheYs of Rhodobacter sphaeroides* , 2006, Journal of Biological Chemistry.

[114]  Y. Tu,et al.  An allosteric model for heterogeneous receptor complexes: understanding bacterial chemotaxis responses to multiple stimuli. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Receptor interactions through phosphorylation and methylation pathways in bacterial chemotaxis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[116]  K. Ottemann,et al.  Proteomic mapping of a suppressor of non‐chemotactic cheW mutants reveals that Helicobacter pylori contains a new chemotaxis protein , 2006, Molecular microbiology.

[117]  Frederick W. Dahlquist,et al.  Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway , 1992, Cell.

[118]  J. Adler,et al.  Isolation of glutamic acid methyl ester from an Escherichia coli membrane protein involved in chemotaxis. , 1977, The Journal of biological chemistry.

[119]  R. Stewart,et al.  CheZ Phosphatase Localizes to Chemoreceptor Patches via CheA-Short , 2003, Journal of bacteriology.

[120]  M. Simon,et al.  Expression of CheA fragments which define domains encoding kinase, phosphotransfer, and CheY binding activities. , 1993, Biochemistry.

[121]  L. Kiessling,et al.  Large increases in attractant concentration disrupt the polar localization of bacterial chemoreceptors , 2005, Molecular microbiology.

[122]  Sung-Hou Kim,et al.  Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor , 1999, Nature.

[123]  R. Schmitt,et al.  Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. , 1998, Biochemistry.

[124]  R. Bourret,et al.  Proposed Signal Transduction Role for Conserved CheY Residue Thr87, a Member of the Response Regulator Active-Site Quintet , 1998, Journal of bacteriology.

[125]  G. L. Hazelbauer,et al.  Transmembrane signaling characterized in bacterial chemoreceptors by using sulfhydryl cross-linking in vivo. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[126]  D. Koshland,et al.  A protein methylesterase involved in bacterial sensing. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[127]  M. Surette,et al.  Signal transduction in bacterial chemotaxis , 1992, The Journal of biological chemistry.

[128]  S. Subramaniam,et al.  Electron tomography of bacterial chemotaxis receptor assemblies. , 2007, Methods in cell biology.

[129]  J. Helmann,et al.  Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs , 1994, Journal of bacteriology.

[130]  J. Stock,et al.  Mechanism of CheA protein kinase activation in receptor signaling complexes. , 1999, Biochemistry.

[131]  G. L. Hazelbauer,et al.  Adaptational modification and ligand occupancy have opposite effects on positioning of the transmembrane signalling helix of a chemoreceptor , 2006, Molecular microbiology.

[132]  H. Berg,et al.  Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[133]  O. Liarzi,et al.  In vivo acetylation of CheY, a response regulator in chemotaxis of Escherichia coli. , 2008, Journal of molecular biology.

[134]  M. Simon,et al.  Isolation and in Vitro Characterization of CheZ Suppressors for the Escherichia coli Chemotactic Response Regulator Mutant CheYN23D (*) , 1996, The Journal of Biological Chemistry.

[135]  Hendrik Szurmant,et al.  Bacillus subtilis CheC and FliY Are Members of a Novel Class of CheY-P-hydrolyzing Proteins in the Chemotactic Signal Transduction Cascade* , 2004, Journal of Biological Chemistry.

[136]  R. Schmitt,et al.  Rem, a New Transcriptional Activator of Motility and Chemotaxis in Sinorhizobium meliloti , 2006, Journal of bacteriology.

[137]  M. Eisenbach,et al.  Oligomerization of the Phosphatase CheZ Upon Interaction with the Phosphorylated Form of CheY , 1996, The Journal of Biological Chemistry.

[138]  Hendrik Szurmant,et al.  Diversity in Chemotaxis Mechanisms among the Bacteria and Archaea , 2004, Microbiology and Molecular Biology Reviews.

[139]  J P Armitage,et al.  The roles of the multiple CheW and CheA homologues in chemotaxis and in chemoreceptor localization in Rhodobacter sphaeroides , 2001, Molecular microbiology.

[140]  D E Koshland,et al.  Kinetics of receptor modification. The multiply methylated aspartate receptors involved in bacterial chemotaxis. , 1986, The Journal of biological chemistry.

[141]  F. Dahlquist,et al.  Methylation of chemotaxis-specific proteins in Escherichia coli cells permeable to S-adenosylmethionine. , 1980, Biochemistry.

[142]  P. Matsumura,et al.  Flagellar Motor-switch Binding Face of CheY and the Biochemical Basis of Suppression by CheY Mutants That Compensate for Motor-switch Defects in Escherichia coli * , 1998, The Journal of Biological Chemistry.

[143]  G. Ordal,et al.  The conserved cytoplasmic module of the transmembrane chemoreceptor McpC mediates carbohydrate chemotaxis in Bacillus subtilis , 2003, Molecular microbiology.

[144]  J. Spudich,et al.  Constitutive activity in chimeras and deletions localize sensory rhodopsin II/HtrII signal relay to the membrane‐inserted domain , 2007, Molecular microbiology.

[145]  R. Weis,et al.  Covalent Modification Regulates Ligand Binding to Receptor Complexes in the Chemosensory System of Escherichia coli , 2000, Cell.

[146]  D. Bray,et al.  Receptor clustering as a cellular mechanism to control sensitivity , 1998, Nature.

[147]  J. Adler,et al.  Pleiotropic aspartate taxis and serine taxis mutants of Escherichia coli. , 1979, Journal of general microbiology.

[148]  C. Francke,et al.  How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria , 2006, Microbiology and Molecular Biology Reviews.

[149]  G. L. Hazelbauer,et al.  Cellular Stoichiometry of the Components of the Chemotaxis Signaling Complex , 2004, Journal of bacteriology.

[150]  Yuhai Tu,et al.  Effects of adaptation in maintaining high sensitivity over a wide range of backgrounds for Escherichia coli chemotaxis. , 2007, Biophysical journal.

[151]  J. S. Parkinson,et al.  Mutational Analysis of the Chemoreceptor-Coupling Domain of the Escherichia coli Chemotaxis Signaling Kinase CheA , 2006, Journal of bacteriology.

[152]  G. Ordal,et al.  Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis. , 1975, Science.

[153]  Joanne I. Yeh,et al.  High-resolution structures of the ligand binding domain of the wild-type bacterial aspartate receptor. , 1996, Journal of molecular biology.

[154]  H. Berg,et al.  Reconstitution of signaling in bacterial chemotaxis , 1987, Journal of bacteriology.

[155]  G. Ordal,et al.  Activation of the CheA kinase by asparagine in Bacillus subtilis chemotaxis. , 1997, Microbiology.

[156]  Michael Eisenbach,et al.  A hitchhiker's guide through advances and conceptual changes in chemotaxis , 2007, Journal of cellular physiology.

[157]  Stefan Dipl.-Ing. Schuster,et al.  Phosphorylation in halobacterial signal transduction. , 1995, The EMBO journal.

[158]  Y. Tu,et al.  Quantitative modeling of sensitivity in bacterial chemotaxis: The role of coupling among different chemoreceptor species , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[159]  Ann M Stock,et al.  Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine. , 1997, Structure.

[160]  R C Stewart,et al.  Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain. , 2000, Biochemistry.

[161]  H. M. Parker,et al.  Complementation and characterization of chemotaxis mutants of Bacillus subtilis , 1985, Journal of bacteriology.

[162]  Hanh H. Hoang,et al.  Regulation of Motility by the ExpR/Sin Quorum-Sensing System in Sinorhizobium meliloti , 2007, Journal of bacteriology.

[163]  A. M. Schnoes,et al.  Designed potent multivalent chemoattractants for Escherichia coli. , 2001, Bioorganic & medicinal chemistry.

[164]  R. Bourret,et al.  Activation of CheY mutant D57N by phosphorylation at an alternative site, Ser‐56 , 1999, Molecular microbiology.

[165]  M. Alam,et al.  Globin-coupled sensors: A class of heme-containing sensors in Archaea and Bacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[166]  R. Bourret,et al.  Isolation and Characterization of Nonchemotactic CheZ Mutants of Escherichia coli , 2000, Journal of bacteriology.

[167]  D. Koshland,et al.  Bacterial chemotaxis in the absence of receptor carboxylmethylation , 1981, Cell.

[168]  Tanvir R. Shaikh,et al.  Subunit Organization in a Soluble Complex of Tar, CheW, and CheA by Electron Microscopy* , 2002, The Journal of Biological Chemistry.

[169]  Karen M. Ottemann,et al.  Helicobacter pylori Uses Motility for Initial Colonization and To Attain Robust Infection , 2002, Infection and Immunity.

[170]  H Wang,et al.  Characterization of the CheAS/CheZ complex: a specific interaction resulting in enhanced dephosphorylating activity on CheY‐phosphate , 1996, Molecular microbiology.

[171]  J. S. Parkinson,et al.  NMR structure of activated CheY. , 2000, Journal of molecular biology.

[172]  M. Simon,et al.  Attenuation of sensory receptor signaling by covalent modification. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[173]  M. Goodwin,et al.  Chemotaxis in the human gastric pathogen Helicobacter pylori: different roles for CheW and the three CheV paralogues, and evidence for CheV2 phosphorylation. , 2001, Microbiology.

[174]  Ann M Stock,et al.  Activation of methylesterase CheB: evidence of a dual role for the regulatory domain. , 1998, Biochemistry.

[175]  H. Berg,et al.  Functional interactions between receptors in bacterial chemotaxis , 2004, Nature.

[176]  M. Simon,et al.  The solution structure and interactions of CheW from Thermotoga maritima , 2002, Nature Structural Biology.

[177]  F. Dahlquist,et al.  Mutations that affect control of the methylesterase activity of CheB, a component of the chemotaxis adaptation system in Escherichia coli , 1990, Journal of bacteriology.

[178]  Rui Zhao,et al.  Structure and catalytic mechanism of the E . coli chemotaxis phosphatase CheZ , 2002 .

[179]  L. Camarena,et al.  The flagellar hierarchy of Rhodobacter sphaeroides is controlled by the concerted action of two enhancer‐binding proteins , 2005, Molecular microbiology.

[180]  J. Helmann,et al.  Dual chemotaxis signaling pathways in Bacillus subtilis: a sigma D-dependent gene encodes a novel protein with both CheW and CheY homologous domains , 1994, Journal of bacteriology.

[181]  G. Ordal,et al.  In vivo and in vitro chemotactic methylation in Bacillus subtilis , 1981, Journal of bacteriology.

[182]  M. Homma,et al.  Attractant binding alters arrangement of chemoreceptor dimers within its cluster at a cell pole. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[183]  R. Weis,et al.  Competitive and Cooperative Interactions in Receptor Signaling Complexes* , 2006, Journal of Biological Chemistry.

[184]  S. Khan,et al.  Determinants of chemotactic signal amplification in Escherichia coli. , 2001, Journal of molecular biology.

[185]  H. Berg,et al.  Effect of Chemoreceptor Modification on Assembly and Activity of the Receptor-Kinase Complex in Escherichia coli , 2004, Journal of bacteriology.

[186]  J. S. Parkinson,et al.  Role of CheW protein in coupling membrane receptors to the intracellular signaling system of bacterial chemotaxis. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[187]  D E Koshland,et al.  A piston model for transmembrane signaling of the aspartate receptor. , 1999, Science.

[188]  G. Ordal,et al.  Selective Methylation Changes on the Bacillus subtilis Chemotaxis Receptor McpB Promote Adaptation* , 2000, The Journal of Biological Chemistry.

[189]  Monica L. Skoge,et al.  Chemosensing in Escherichia coli: two regimes of two-state receptors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[190]  M Welch,et al.  Signal termination in bacterial chemotaxis: CheZ mediates dephosphorylation of free rather than switch-bound CheY. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[191]  J. Adler,et al.  Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[192]  Judith P Armitage,et al.  Phosphotransfer in Rhodobacter sphaeroides chemotaxis. , 2002, Journal of molecular biology.

[193]  M. Manson,et al.  Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease , 1986, Nature.

[194]  D. Bray,et al.  Signaling complexes: biophysical constraints on intracellular communication. , 1998, Annual review of biophysics and biomolecular structure.

[195]  P. Matsumura,et al.  Crystal Structures of CheY Mutants Y106W and T87I/Y106W , 1997, The Journal of Biological Chemistry.

[196]  R. Weis,et al.  Distributed subunit interactions in CheA contribute to dimer stability: a sedimentation equilibrium study. , 2004, Biochimica et biophysica acta.

[197]  F. Dahlquist,et al.  The contact interface of a 120 kD CheA-CheW complex by methyl TROSY interaction spectroscopy. , 2005, Journal of the American Chemical Society.

[198]  M. Simon,et al.  Activation of the phosphosignaling protein CheY. II. Analysis of activated mutants by 19F NMR and protein engineering. , 1993, The Journal of biological chemistry.

[199]  J. Stock,et al.  Kinetics of CheY phosphorylation by small molecule phosphodonors , 1999, FEBS letters.

[200]  Victor Sourjik,et al.  In Silico Biology: From Simulation to Understanding , 2007, Current Biology.

[201]  H. Berg,et al.  Receptor sensitivity in bacterial chemotaxis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[202]  J. Spudich The multitalented microbial sensory rhodopsins. , 2006, Trends in microbiology.

[203]  Mingshan Li,et al.  Adaptational assistance in clusters of bacterial chemoreceptors , 2005, Molecular microbiology.

[204]  Alla Shainskaya,et al.  The chemotaxis response regulator CheY can catalyze its own acetylation. , 2006, Journal of molecular biology.

[205]  D E Koshland,et al.  Roles of cheY and cheZ gene products in controlling flagellar rotation in bacterial chemotaxis of Escherichia coli , 1987, Journal of bacteriology.

[206]  G. Ordal,et al.  Inhibition of amino acid transport in Bacillus subtilis by uncouplers of oxidative phosphorylation. , 1977, Archives of biochemistry and biophysics.

[207]  Ann M Stock,et al.  Chemotaxis receptor recognition by protein methyltransferase CheR , 1998, Nature Structural Biology.

[208]  J. Armitage,et al.  Characterization of the chemotaxis protein CheW from Rhodobacter sphaeroides and its effect on the behaviour of Escherichia coli , 1997, Molecular microbiology.

[209]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[210]  Ann M Stock,et al.  Characterization of the Thermotoga maritima chemotaxis methylation system that lacks pentapeptide‐dependent methyltransferase CheR:MCP tethering , 2007, Molecular microbiology.

[211]  M. Simon,et al.  Protein phosphorylation and bacterial chemotaxis. , 1988, Cold Spring Harbor symposia on quantitative biology.

[212]  F. Dahlquist,et al.  Chemotaxis in Escherichia coli: associations of protein components. , 1980, Biochemistry.

[213]  L. Shapiro,et al.  Polar location of the chemoreceptor complex in the Escherichia coli cell. , 1993, Science.

[214]  S. V. Aksenov,et al.  A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. , 2003, Journal of molecular biology.

[215]  P. Matsumura,et al.  Bivalent-metal binding to CheY protein. Effect on protein conformation. , 1992, The Biochemical journal.

[216]  R C Stewart,et al.  Activating and inhibitory mutations in the regulatory domain of CheB, the methylesterase in bacterial chemotaxis. , 1993, The Journal of biological chemistry.

[217]  J. S. Parkinson,et al.  Chemotactic Signaling by an Escherichia coli CheA Mutant That Lacks the Binding Domain for Phosphoacceptor Partners , 2004, Journal of bacteriology.

[218]  Conformational suppression of inter-receptor signaling defects. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[219]  Dennis Bray,et al.  Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis , 2000, Nature Cell Biology.

[220]  D. Henner,et al.  Chemotactic methyltransferase promotes adaptation to repellents in Bacillus subtilis. , 1993, The Journal of biological chemistry.

[221]  G. Ordal Recognition sites for chemotactic repellents of Bacillus subtilis , 1976, Journal of bacteriology.

[222]  F. Dahlquist,et al.  Identification of the binding interfaces on CheY for two of its targets, the phosphatase CheZ and the flagellar switch protein fliM. , 1999, Journal of molecular biology.

[223]  Mark A. J. Roberts,et al.  Two Chemosensory Operons of Rhodobacter sphaeroides Are Regulated Independently by Sigma 28 and Sigma 54 , 2006, Journal of bacteriology.

[224]  W. Shi,et al.  Construction and Characterization of a cheA Mutant of Treponema denticola , 2002, Journal of bacteriology.

[225]  D. Blair,et al.  Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor , 2006, Proceedings of the National Academy of Sciences.

[226]  I. Zhulin,et al.  The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[227]  B. Scharf,et al.  Functional Analysis of Nine Putative Chemoreceptor Proteins in Sinorhizobium meliloti , 2006, Journal of bacteriology.

[228]  F. Dahlquist,et al.  Adaptation in bacterial chemotaxis: CheB-dependent modification permits additional methylations of sensory transducer proteins , 1982, Cell.

[229]  G. Ordal,et al.  Chemotaxis toward amino acids by Bacillus subtilis , 1977, Journal of bacteriology.

[230]  G. Ordal,et al.  Functional homology of chemotactic methylesterases from Bacillus subtilis and Escherichia coli , 1989, Journal of bacteriology.

[231]  F. Dahlquist,et al.  Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[232]  J. Adler,et al.  Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[233]  J. Stock,et al.  Systems biology of bacterial chemotaxis. , 2006, Current opinion in microbiology.

[234]  H. Berg,et al.  Temporal comparisons in bacterial chemotaxis. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[235]  R. Bourret,et al.  Conformational coupling in the chemotaxis response regulator CheY , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[236]  R. Macnab,et al.  The gradient-sensing mechanism in bacterial chemotaxis. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[237]  M. Simon,et al.  Crystal structures of CheY from Thermotoga maritima do not support conventional explanations for the structural basis of enhanced thermostability , 1998, Protein science : a publication of the Protein Society.

[238]  H. Saxild,et al.  Functional and genetic characterization of mcpC, which encodes a third methyl-accepting chemotaxis protein in Bacillus subtilis. , 1997, Microbiology.

[239]  Ann M Stock,et al.  Identification of Methylation Sites in Thermotoga maritima Chemotaxis Receptors , 2006, Journal of bacteriology.

[240]  A. Ninfa,et al.  Protein phosphorylation and regulation of adaptive responses in bacteria. , 1989, Microbiological reviews.

[241]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[242]  J. Stock,et al.  Mechanism of phosphatase activity in the chemotaxis response regulator CheY. , 2003, Biochemistry.

[243]  Ann M Stock,et al.  Crystal structures of beryllium fluoride-free and beryllium fluoride-bound CheY in complex with the conserved C-terminal peptide of CheZ reveal dual binding modes specific to CheY conformation. , 2006, Journal of molecular biology.

[244]  R. Schmitt,et al.  Control of speed modulation (chemokinesis) in the unidirectional rotary motor of Sinorhizobium meliloti , 2005, Molecular microbiology.

[245]  Christine Josenhans,et al.  The role of motility as a virulence factor in bacteria. , 2002, International journal of medical microbiology : IJMM.

[246]  G. Ordal,et al.  CheX in the Three-Phosphatase System of Bacterial Chemotaxis , 2007, Journal of bacteriology.

[247]  K. Hughes,et al.  Translation Inhibition of the Salmonella fliC Gene by the fliC 5′ Untranslated Region, fliC Coding Sequences, and FlgM , 2006, Journal of bacteriology.

[248]  P. Matsumura,et al.  Crystal structure of Escherichia coli CheY refined at 1.7-A resolution. , 1993, The Journal of biological chemistry.

[249]  J. Falke,et al.  CheA Kinase of bacterial chemotaxis: chemical mapping of four essential docking sites. , 2006, Biochemistry.

[250]  Karen A. Fahrner,et al.  CheZ Has No Effect on Flagellar Motors Activated by CheY13DK106YW , 1998, Journal of bacteriology.

[251]  J. Maddock,et al.  Polar Clustering of the Chemoreceptor Complex inEscherichia coli Occurs in the Absence of Complete CheA Function , 2000, Journal of bacteriology.

[252]  F. Dahlquist,et al.  The dynamic behavior of CheW from Thermotoga maritima in solution, as determined by nuclear magnetic resonance: implications for potential protein-protein interaction sites. , 2002, Biophysical chemistry.

[253]  G. Ordal,et al.  In vitro methylation and demethylation of methyl-accepting chemotaxis proteins in Bacillus subtilis. , 1984, Biochemistry.

[254]  J. S. Parkinson,et al.  Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[255]  G. Ordal,et al.  Bacillus subtilis CheD Is a Chemoreceptor Modification Enzyme Required for Chemotaxis* , 2002, The Journal of Biological Chemistry.

[256]  G. Ordal,et al.  Assays for CheC, FliY, and CheX as representatives of response regulator phosphatases. , 2007, Methods in enzymology.

[257]  S. Chervitz,et al.  Transmembrane signaling by the aspartate receptor: engineered disulfides reveal static regions of the subunit interface. , 1995, Biochemistry.

[258]  M. Simon,et al.  Phosphotransfer and CheY-binding domains of the histidine autokinase CheA are joined by a flexible linker. , 1996, Biochemistry.

[259]  G. L. Hazelbauer,et al.  Using Nanodiscs to create water-soluble transmembrane chemoreceptors inserted in lipid bilayers. , 2007, Methods in enzymology.

[260]  J. Spudich,et al.  Signal Transfer in Haloarchaeal Sensory Rhodopsin– Transducer Complexes † , 2008, Photochemistry and photobiology.

[261]  P. P. van der Werf,et al.  Identification of a gamma-glutamyl methyl ester in bacterial membrane protein involved in chemotaxis. , 1977, The Journal of biological chemistry.

[262]  L. Kiessling,et al.  Conformational changes of glucose/galactose‐binding protein illuminated by open, unliganded, and ultra‐high‐resolution ligand‐bound structures , 2007, Protein science : a publication of the Protein Society.

[263]  Dennis Bray,et al.  Bacterial chemotaxis and the question of gain , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[264]  J. S. Parkinson,et al.  Bacterial chemoreceptors: high-performance signaling in networked arrays. , 2008, Trends in biochemical sciences.

[265]  G. Ordal,et al.  Effect of loss of CheC and other adaptational proteins on chemotactic behaviour in Bacillus subtilis. , 2004, Microbiology.

[266]  Laura L Kiessling,et al.  Chemical probes of bacterial signal transduction reveal that repellents stabilize and attractants destabilize the chemoreceptor array. , 2008, ACS chemical biology.

[267]  Dennis Bray,et al.  Binding and diffusion of CheR molecules within a cluster of membrane receptors. , 2002, Biophysical journal.

[268]  G. Ordal,et al.  Purification and characterization of chemotactic methylesterase from Bacillus subtilis. , 1984, Biochemistry.

[269]  P. Matsumura,et al.  Bacterial chemotaxis signaling complexes: formation of a CheA/CheW complex enhances autophosphorylation and affinity for CheY. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[270]  G. Ordal,et al.  Bacillus subtilis CheN, a homolog of CheA, the central regulator of chemotaxis in Escherichia coli , 1991, Journal of bacteriology.

[271]  J. Kirby,et al.  CheB is required for behavioural responses to negative stimuli during chemotaxis in Bacillus subtilis , 2000, Molecular microbiology.

[272]  J. S. Parkinson,et al.  Interaction of the cheC and cheZ gene products is required for chemotactic behavior in Escherichia coli. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[273]  R. Schmitt,et al.  Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti , 1996, Molecular microbiology.

[274]  J. Spudich,et al.  Identification of Methylation Sites and Effects of Phototaxis Stimuli on Transducer Methylation in Halobacterium salinarum , 1999, Journal of bacteriology.

[275]  Igor B. Zhulin,et al.  Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors , 2007, Proceedings of the National Academy of Sciences.

[276]  J. Kirby,et al.  Methanol production during chemotaxis to amino acids in Bacillus subtilis , 1997, Molecular microbiology.

[277]  J. Stock,et al.  Receptor Methylation Controls the Magnitude of Stimulus-Response Coupling in Bacterial Chemotaxis* , 2002, The Journal of Biological Chemistry.

[278]  M. Chamberlin,et al.  Sequence and characterization of Bacillus subtilis CheW. , 1992, The Journal of biological chemistry.

[279]  S. L. Porter,et al.  CheR- and CheB-Dependent Chemosensory Adaptation System of Rhodobacter sphaeroides , 2001, Journal of bacteriology.

[280]  H. Szurmant,et al.  Ligand-induced conformational changes in the Bacillus subtilis chemoreceptor McpB determined by disulfide crosslinking in vivo. , 2004, Journal of molecular biology.

[281]  Ned S. Wingreen,et al.  Chemotaxis Receptor Complexes: From Signaling to Assembly , 2007, PLoS Comput. Biol..