On extensions of triangular norms on bounded lattices

Abstract Smallest and largest possible extensions of triangular norms on bounded lattices are discussed. As such ordinal and horizontal sum like constructions for t-norms on bounded lattices are investigated. Necessary and sufficient conditions for the lattice guaranteeing that the extension is again a t-norm are revealed.

[1]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[2]  Zdenka Riečanová Pastings of MV-Effect Algebras , 2004 .

[3]  M. Tokizawa,et al.  On Topological Semigroups , 1982 .

[4]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[5]  L. Fuchs,et al.  On lattice-ordered commutative semigroups , 2003 .

[6]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[7]  G. Mayor,et al.  Triangular norms on discrete settings , 2005 .

[8]  J. M. Dunn,et al.  Modern Uses of Multiple-Valued Logic , 1977 .

[9]  Radko Mesiar,et al.  The lattice-theoretic structure of the sets of triangular norms and semi-copulas , 2008 .

[10]  J. Dunn,et al.  Intuitive semantics for first-degree entailments and ‘coupled trees’ , 1976 .

[11]  Joan Torrens,et al.  On a class of operators for expert systems , 1993, Int. J. Intell. Syst..

[12]  Newton C. A. da Costa,et al.  On the theory of inconsistent formal systems , 1974, Notre Dame J. Formal Log..

[13]  W. M. Faucett Compact semigroups irreducibly connected between two idempotents , 1955 .

[14]  Susanne Saminger-Platz,et al.  On ordinal sums of triangular norms on bounded lattices , 2006, Fuzzy Sets Syst..

[15]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[16]  A. H. Clifford,et al.  Naturally Totally Ordered Commutative Semigroups , 1954 .

[17]  Gert de Cooman,et al.  Order norms on bounded partially ordered sets. , 1994 .

[18]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[19]  R. Milner Mathematical Centre Tracts , 1976 .

[20]  R. Mesiar,et al.  Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .

[21]  Jan Łukasiewicz,et al.  Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls (micro) , 1930 .

[22]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .

[23]  Satoko Titani A lattice-valued set theory , 1999, Arch. Math. Log..

[24]  M. J. Frank On the simultaneous associativity of F(x, y) and x+y-F(x, y). (Short Communication). , 1978 .

[25]  Radko Mesiar,et al.  Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford , 2002 .

[26]  Manuela Busaniche Decomposition of BL-chains , 2005 .

[27]  Andrea Mesiarová-Zemánková,et al.  Cancellative t-norms , 2003, EUSFLAT Conf..

[28]  P. Aglianò,et al.  Varieties of BL- algebras I: General properties. , 2003 .

[29]  R. Lidl,et al.  Applied abstract algebra , 1984 .

[30]  Emil L. Post Introduction to a General Theory of Elementary Propositions , 1921 .

[31]  Mitio Takano Strong completeness of lattice-valued logic , 2002, Arch. Math. Log..