Temperature-dependent magnetocrystalline anisotropy of rare earth/transition metal permanent magnets from first principles: The light RCo5 (R=Y, La-Gd) intermetallics

Computational design of more efficient rare earth/transition metal (RE-TM) permanent magnets requires accurately calculating the magnetocrystalline anisotropy (MCA) at finite temperature, since this property places an upper bound on the coercivity. Here, we present a first-principles methodology to calculate the MCA of RE-TM magnets which fully accounts for the effects of temperature on the underlying electrons. The itinerant electron TM magnetism is described within the disordered local moment picture, and the localized RE-4f magnetism is described within crystal field theory. We use our model, which is free of adjustable parameters, to calculate the MCA of the RCo$_5$ (R=Y, La-Gd) magnet family for temperatures 0--600 K. We correctly find a huge uniaxial anisotropy for SmCo$_5$ (21.3 MJm$^{-3}$ at 300 K) and two finite temperature spin reorientation transitions for NdCo$_5$. The calculations also demonstrate dramatic valency effects in CeCo$_5$ and PrCo$_5$. Our calculations provide quantitative, first-principles insight into several decades of RE-TM experimental studies.

[1]  Self-interaction correction in multiple scattering theory , 2004, cond-mat/0406515.

[2]  B. Johansson,et al.  3d-5d band magnetism in rare earth-transition metal intermetallics: total and partial magnetic moments of the RFe2 (R=Gd-Yb) Laves phase compounds , 1991 .

[3]  K. Buschow,et al.  Intermetallic compounds of rare-earth and 3d transition metals , 1977 .

[4]  Ezio Bruno,et al.  Temperature dependent magnetic anisotropy in metallic magnets from an ab initio electronic structure theory: L1(0)-ordered FePt. , 2004, Physical review letters.

[5]  K. Buschow,et al.  Crystal-field anisotropy of Sm3+ in SmCo5 , 1974 .

[6]  C. Patrick,et al.  Rare-earth/transition-metal magnetic interactions in pristine and (Ni,Fe)-doped YCo5 and GdCo5 , 2017, 1708.00288.

[7]  B. Ginatempo,et al.  Algorithms for Korringa-Kohn-Rostoker electronic structure calculations in any Bravais lattice , 1997 .

[8]  J. Thompson,et al.  The magnetic anisotropy of cobalt , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  Paweł T. Jochym,et al.  Lattice dynamics of neodymium: Influence of 4 f electron correlations , 2016 .

[10]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[11]  Hong,et al.  Magnetic properties of R ions in RCo5 compounds (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er). , 1991, Physical review. B, Condensed matter.

[12]  Oliver Gutfleisch,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011 .

[13]  Geetha Balakrishnan,et al.  Calculating the Magnetic Anisotropy of Rare-Earth-Transition-Metal Ferrimagnets. , 2018, Physical review letters.

[14]  B. L. Gyorffy,et al.  Temperature dependence of magnetic anisotropy: An ab initio approach , 2006 .

[15]  M. Kuz’min,et al.  Theory of Crystal-Field Effects in 3 d-4 f Intermetallic Compounds , 2007 .

[16]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[17]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[18]  P. Larson,et al.  Effects of doping on the magnetic anisotropy energy in SmCo 5 − x Fe x and YCo 5 − x Fe x , 2004 .

[19]  J. Wernick,et al.  Transition element–rare earth compounds with Cu5Ca structure , 1959 .

[20]  Takashi Miyake,et al.  Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach , 2017, 1705.08027.

[21]  T. Miyake,et al.  Role of typical elements in Nd2Fe14X ( X=B , C, N, O, F) , 2018, Physical Review Materials.

[22]  D. Givord,et al.  Co energy and magnetization anisotropies in RCo5 intermetallics between 4.2 K and 300 K , 1981 .

[23]  K. Strnat The hard-magnetic properties of rare earth-transition metal alloys , 1972 .

[24]  J. Barandiaran,et al.  Tuning the magnetocrystalline anisotropy ofFe3Snby alloying , 2018, Physical Review B.

[25]  R. Radwanski The rare earth contribution to the magnetocrystalline anisotropy in RCo5 intermetallics , 1986 .

[26]  Neil Genzlinger A. and Q , 2006 .

[27]  H. Fujii,et al.  SATURATION MAGNETIC MOMENT AND CRYSTALLINE ANISOTROPY OF SINGLE CRYSTALS OF LIGHT RARE EARTH COBALT COMPOUNDS RCo5 , 1971 .

[28]  Kaplesh Kumar,et al.  RETM5 and RE2TM17 permanent magnets development , 1988 .

[29]  M. Katsnelson,et al.  Standard model of the rare earths analyzed from the Hubbard I approximation , 2015, 1512.02848.

[30]  Frederick E. Pinkerton,et al.  Pr‐Fe and Nd‐Fe‐based materials: A new class of high‐performance permanent magnets (invited) , 1984 .

[31]  Keith S. Murray,et al.  PHI: A powerful new program for the analysis of anisotropic monomeric and exchange‐coupled polynuclear d‐ and f‐block complexes , 2013, J. Comput. Chem..

[32]  R. Elliott Magnetic properties of rare earth metals , 1972 .

[33]  W. Marsden I and J , 2012 .

[34]  T. Miyake,et al.  First-principles study of intersite magnetic couplings in NdFe12 and NdFe12X (X = B, C, N, O, F) , 2016, 1612.04478.

[35]  J. Staunton,et al.  Lanthanide contraction and magnetism in the heavy rare earth elements , 2007, Nature.

[36]  Johansson,et al.  Orbital magnetism in Fe, Co, and Ni. , 1990, Physical review. B, Condensed matter.

[37]  G. Hoffer,et al.  A Family of New Cobalt‐Base Permanent Magnet Materials , 1967 .

[38]  Julie B. Staunton,et al.  Rare-earth/transition-metal magnets at finite temperature: Self-interaction-corrected relativistic density functional theory in the disordered local moment picture , 2018, Physical Review B.

[39]  M. Richter REVIEW ARTICLE: Band structure theory of magnetism in 3d-4f compounds , 1998 .

[40]  M. Ohkoshi,et al.  Spin reorientation in NdCo5 single crystals , 2008 .

[41]  Hajime Nakamura,et al.  The current and future status of rare earth permanent magnets , 2017, Scripta Materialia.

[42]  A. Menth,et al.  Magnetocrystalline anisotropy of light rare-earth cobalt compounds , 1975 .

[43]  K. Buschow,et al.  Intersublattice exchange coupling in Gd-Co compounds studied by INS , 1994 .

[44]  Julie B. Staunton,et al.  A first-principles theory of ferromagnetic phase transitions in metals , 1985 .

[45]  B. Johansson,et al.  3d-5d band magnetism in rare earth transition metal intermetallics: LuFe2 , 1989 .

[46]  A. Arrott Criterion for Ferromagnetism from Observations of Magnetic Isotherms , 1957 .

[47]  A. Ermolenko Magnetocrystalline anisotropy of rare earth intermetallics , 1976 .

[48]  J. F. Herbst,et al.  R 2 Fe 14 B materials: Intrinsic properties and technological aspects , 1991 .

[49]  W. Evans,et al.  Thermal signatures of the Kondo volume collapse in cerium. , 2008, Physical review letters.

[50]  J. M. D. Coey,et al.  Hard Magnetic Materials: A Perspective , 2011, IEEE Transactions on Magnetics.

[51]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[52]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[53]  Y. Kvashnin,et al.  Prediction of the new efficient permanent magnet SmCoNiFe 3 , 2017, 1708.08957.

[54]  William Fuller Brown,et al.  Criterion for Uniform Micromagnetization , 1957 .

[55]  K. Stevens Matrix Elements and Operator Equivalents Connected with the Magnetic Properties of Rare Earth Ions , 1952 .

[56]  A. Pathak,et al.  Cerium: An Unlikely Replacement of Dysprosium in High Performance Nd–Fe–B Permanent Magnets , 2015, Advanced materials.

[57]  J. Staunton,et al.  Theory of Magnetic Ordering in the Heavy Rare Earths: Ab Initio Electronic Origin of Pair- and Four-Spin Interactions. , 2016, Physical review letters.

[58]  C. Patrick,et al.  Crystal field coefficients for yttrium analogues of rare-earth/transition-metal magnets using density-functional theory in the projector-augmented wave formalism , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[59]  Kiyoyuki Terakura,et al.  Orbital magnetism in FeO , 1998 .

[60]  T. I. Ivanova,et al.  Giant rotating magnetocaloric effect in the region of spin-reorientation transition in the NdCo₅ single crystal. , 2010, Physical review letters.

[61]  George Rowlands,et al.  Field-induced canting of magnetic moments in GdCo5 at finite temperature: first-principles calculations and high-field measurements , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[62]  P. Alam ‘K’ , 2021, Composites Engineering.

[63]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[64]  M. Sagawa,et al.  New material for permanent magnets on a base of Nd and Fe (invited) , 1984 .

[65]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[66]  I. D. Marco,et al.  Combining electronic structure and many-body theory with large databases: A method for predicting the nature of 4 f states in Ce compounds , 2017, 1705.10674.

[67]  R. Radwanski The origin of the basal-plane magnetocrystalline anisotropy in 4f Co-rich intermetallics , 1987 .

[68]  D. Newman,et al.  The superposition model of crystal fields , 1989 .