Human chorionic villus mesenchymal stromal cells reveal strong endothelial conversion properties.

[1]  N. Tajiri,et al.  Amniotic Fluid as a Rich Source of Mesenchymal Stromal Cells for Transplantation Therapy , 2011, Cell transplantation.

[2]  P. Leoni,et al.  Human Mesenchymal Stem Cells from Chorionic Villi and Amniotic Fluid are not Susceptible to Transformation after Extensive in Vitro Expansion , 2011, Cell transplantation.

[3]  P. Bianco Back to the Future: Moving Beyond “Mesenchymal Stem Cells” , 2011, Journal of cellular biochemistry.

[4]  Qingbo Xu,et al.  Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. , 2011, Cardiovascular research.

[5]  J. Rakic,et al.  MicroRNA-21 Exhibits Antiangiogenic Function by Targeting RhoB Expression in Endothelial Cells , 2011, PloS one.

[6]  P. Guillot,et al.  Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues , 2010, Journal of The Royal Society Interface.

[7]  R. Geffers,et al.  GATA6 Promotes Angiogenic Function and Survival in Endothelial Cells by Suppression of Autocrine Transforming Growth Factor β/Activin Receptor-like Kinase 5 Signaling* , 2010, The Journal of Biological Chemistry.

[8]  S. Brennecke,et al.  Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. , 2010, Placenta.

[9]  C. Chien,et al.  Multilineage differentiation potential of fibroblast-like stromal cells derived from human skin. , 2010, Tissue engineering. Part A.

[10]  A. Bayés‐Genís,et al.  Exposure to cardiomyogenic stimuli fails to transdifferentiate human umbilical cord blood-derived mesenchymal stem cells , 2010, Basic Research in Cardiology.

[11]  A. Cometa,et al.  Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood- and bone marrow-derived progenitors , 2009, Haematologica.

[12]  Shusheng Wang,et al.  AngiomiRs--key regulators of angiogenesis. , 2009, Current opinion in genetics & development.

[13]  N. Mongan,et al.  Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. , 2009, Stem cells and development.

[14]  Yuan Yang,et al.  The immunomodulatory activity of human umbilical cord blood‐derived mesenchymal stem cells in vitro , 2009, Immunology.

[15]  F. Timmermans,et al.  Endothelial progenitor cells: identity defined? , 2008, Journal of cellular and molecular medicine.

[16]  J. Polak,et al.  Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. , 2008, Differentiation; research in biological diversity.

[17]  R. Oostendorp,et al.  In Vivo Osteoprogenitor Potency of Human Stromal Cells from Different Tissues Does Not Correlate with Expression of POU5F1 or Its Pseudogenes , 2008, Stem cells.

[18]  R. Zimmermann,et al.  Comparative Characterization of Cultured Human Term Amnion Epithelial and Mesenchymal Stromal Cells for Application in Cell Therapy , 2008, Cell transplantation.

[19]  J. Yu,et al.  Cell cycle dependent telomere regulation by telomerase in human bone marrow mesenchymal stem cells. , 2008, Biochemical and biophysical research communications.

[20]  C. Schneider,et al.  Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). , 2007, Blood.

[21]  O. Parolini,et al.  Isolation and characterization of mesenchymal cells from human fetal membranes , 2007, Journal of tissue engineering and regenerative medicine.

[22]  Jordan S. Pober,et al.  Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells , 2007, Circulation research.

[23]  J. Chan,et al.  Human First‐Trimester Fetal MSC Express Pluripotency Markers and Grow Faster and Have Longer Telomeres Than Adult MSC , 2007, Stem cells.

[24]  V. Fossati,et al.  Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro , 2007, BMC Developmental Biology.

[25]  G. Camussi,et al.  Isolation and Characterization of a Stem Cell Population from Adult Human Liver , 2006, Stem cells.

[26]  Laura Mariani,et al.  MicroRNAs modulate the angiogenic properties of HUVECs. , 2006, Blood.

[27]  Wei Huang,et al.  Isolation of mesenchymal stem cells from human placenta: Comparison with human bone marrow mesenchymal stem cells , 2006, Cell biology international.

[28]  F. Crea,et al.  Myogenic potential of adipose-tissue-derived cells , 2006, Journal of Cell Science.

[29]  Lindolfo da Silva Meirelles,et al.  Mesenchymal stem cells reside in virtually all post-natal organs and tissues , 2006, Journal of Cell Science.

[30]  A. Ho,et al.  The heterogeneity of human mesenchymal stem cell preparations--evidence from simultaneous analysis of proteomes and transcriptomes. , 2006, Experimental hematology.

[31]  W. Holzgreve,et al.  Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. , 2005, American journal of obstetrics and gynecology.

[32]  Toshio Miki,et al.  Stem Cell Characteristics of Amniotic Epithelial Cells , 2005, Stem cells.

[33]  J. D. De León-Luis,et al.  Chromosomal studies on 2 mL of celomic fluid obtained during the fifth week of development in the timed-pregnant baboon model. , 2005, The Journal of reproductive medicine.

[34]  M. Jansson,et al.  Fetal Mesenchymal Stem-Cell Engraftment in Bone after In Utero Transplantation in a Patient with Severe Osteogenesis Imperfecta , 2005, Transplantation.

[35]  H. Okano,et al.  Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells , 2004, Journal of neuroscience research.

[36]  T. Kitamura,et al.  Human Placenta‐Derived Cells Have Mesenchymal Stem/Progenitor Cell Potential , 2004, Stem cells.

[37]  B. Huppertz,et al.  Sequential expression of VEGF and its receptors in human placental villi during very early pregnancy: differences between placental vasculogenesis and angiogenesis. , 2004, Placenta.

[38]  O. Lee,et al.  Isolation of multipotent mesenchymal stem cells from umbilical cord blood. , 2004, Blood.

[39]  E. Holler,et al.  Isolation and transplantation of allogeneic pulmonary endothelium derived from GFP transgenic mice. , 2003, Journal of immunological methods.

[40]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[41]  Nam W. Kim,et al.  Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP) , 1997, Nucleic Acids Res..

[42]  Arnold I. Caplan,et al.  Mesenchymal Stem Cells , 1991, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[43]  F. Blanco,et al.  Isolation and characterization of mesenchymal stem cells from human amniotic membrane. , 2011, Tissue engineering. Part C, Methods.

[44]  J. Moraleda,et al.  The amniotic membrane as a source of stem cells. , 2010, Histology and histopathology.

[45]  Stefanie Dimmeler,et al.  Targeting microRNA expression to regulate angiogenesis. , 2008, Trends in pharmacological sciences.

[46]  P. Leoni,et al.  Characterization and expansion of mesenchymal progenitor cells from first-trimester chorionic villi of human placenta. , 2008, Cytotherapy.

[47]  S. Chien,et al.  Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells. , 2008, Journal of biomechanics.

[48]  E. Hiyama,et al.  - 1-Telomere and telomerase in stem cells , 2007 .

[49]  D. Prockop,et al.  Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. , 2006, Cytotherapy.

[50]  F. Marini,et al.  Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. , 2005, Cytotherapy.

[51]  N. Friedman,et al.  Human and porcine early kidney precursors as a new source for transplantation , 2003, Nature Medicine.