Soybean yield prediction by machine learning and climate

[1]  Tao Ye,et al.  Improving Spatial Disaggregation of Crop Yield by Incorporating Machine Learning with Multisource Data: A Case Study of Chinese Maize Yield , 2022, Remote. Sens..

[2]  Remigio Berruto,et al.  Machine Learning in Agriculture: A Comprehensive Updated Review , 2021, Sensors.

[3]  S. Sepúlveda,et al.  Use and Adaptations of Machine Learning in Big Data—Applications in Real Cases in Agriculture , 2021, Electronics.

[4]  B I Evstatiev,et al.  A review on the methods for big data analysis in agriculture , 2021, IOP Conference Series: Materials Science and Engineering.

[5]  Suresh Neethirajan The role of sensors, big data and machine learning in modern animal farming , 2020 .

[6]  Witold Pedrycz,et al.  A survey on machine learning for data fusion , 2020, Inf. Fusion.

[7]  G. B. Torsoni,et al.  Caracterização Hídrica Espacial e Sazonal de Mato Grosso do Sul com Dados em Grid , 2020, Revista Brasileira de Meteorologia.

[8]  A. Kemanian,et al.  The response of maize, sorghum, and soybean yield to growing-phase climate revealed with machine learning , 2020, Environmental Research Letters.

[9]  Viktor E. Krebs,et al.  Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions , 2020, Current Reviews in Musculoskeletal Medicine.

[10]  Imad SASSI,et al.  Adaptation of Classical Machine Learning Algorithms to Big Data Context: Problems and Challenges : Case Study: Hidden Markov Models Under Spark , 2019, 2019 1st International Conference on Smart Systems and Data Science (ICSSD).

[11]  Lucas Borges Ferreira,et al.  Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – A new approach , 2019, Journal of Hydrology.

[12]  Md Nazirul Islam Sarker,et al.  Promoting digital agriculture through big data for sustainable farm management , 2019 .

[13]  Zhixin Liu,et al.  Affective design using machine learning: a survey and its prospect of conjoining big data , 2018, Int. J. Comput. Integr. Manuf..

[14]  Craig S. T. Daughtry,et al.  Assessing the Variability of Corn and Soybean Yields in Central Iowa Using High Spatiotemporal Resolution Multi-Satellite Imagery , 2018, Remote. Sens..

[15]  Sujatha Srinivasan,et al.  An understanding of machine learning techniques in big data analytics: a survey , 2018, International Journal of Engineering & Technology.

[16]  P. Sentelhas,et al.  Assessment of NASA/POWER satellite‐based weather system for Brazilian conditions and its impact on sugarcane yield simulation , 2018 .

[17]  Roheet Bhatnagar,et al.  Machine Learning and Big Data Processing: A Technological Perspective and Review , 2018, AMLTA.

[18]  D. Lobell,et al.  Improving the accuracy of satellite-based high-resolution yield estimation: A test of multiple scalable approaches , 2017 .

[19]  Dionysis D. Bochtis,et al.  ICT Innovations and Smart Farming , 2017, HAICTA.

[20]  E. S. Silva,et al.  Lagartas praga das famílias Noctuidae e Erebidae em cultivo de soja no Cerrado de Roraima. , 2017 .

[21]  K. O. Adekalu,et al.  Soil water storage, yield, water productivity and transpiration efficiency of soybeans (Glyxine max L.Merr) as affected by soil surface management in Ile-Ife, Nigeria , 2017, International Soil and Water Conservation Research.

[22]  Miriam A. M. Capretz,et al.  Machine Learning With Big Data: Challenges and Approaches , 2017, IEEE Access.

[23]  Qi-hui Wu,et al.  A survey of machine learning for big data processing , 2016, EURASIP J. Adv. Signal Process..

[24]  S. Sonka Big Data: Fueling the Next Evolution of Agricultural Innovation , 2016 .

[25]  Hadi Esmaeilzadeh,et al.  TABLA: A unified template-based framework for accelerating statistical machine learning , 2016, 2016 IEEE International Symposium on High Performance Computer Architecture (HPCA).

[26]  Euler Cipriani Victorino Modelagem agrometeorológica para a previsão de produtividade de cafeeiros na região sul do Estado de Minas Gerais , 2015 .

[27]  C. Nendel,et al.  The soybean yield gap in Brazil – magnitude, causes and possible solutions for sustainable production , 2015, The Journal of Agricultural Science.

[28]  George K. Karagiannidis,et al.  Efficient Machine Learning for Big Data: A Review , 2015, Big Data Res..

[29]  Elías Fereres,et al.  AquaCrop: FAO's crop water productivity and yield response model , 2014, Environ. Model. Softw..

[30]  Gonzalo Mateos,et al.  Modeling and Optimization for Big Data Analytics: (Statistical) learning tools for our era of data deluge , 2014, IEEE Signal Processing Magazine.

[31]  Xue-wen Chen,et al.  Big Data Deep Learning: Challenges and Perspectives , 2014, IEEE Access.

[32]  Walbert Júnior Reis dos Santos,et al.  Modis images for agrometeorological monitoring of coffee areas , 2013 .

[33]  J. Stape,et al.  Köppen's climate classification map for Brazil , 2013 .

[34]  Zhiyong Peng,et al.  From Big Data to Big Data Mining: Challenges, Issues, and Opportunities , 2013, DASFAA Workshops.

[35]  J. Board,et al.  A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships , 2013 .

[36]  Allen C. Cheng,et al.  Machine learning on-a-chip: A high-performance low-power reusable neuron architecture for artificial neural networks in ECG classifications , 2012, Comput. Biol. Medicine.

[37]  James W. Jones,et al.  Improving Soil Fertility Recommendations in Africa using the Decision Support System for Agrotechnology Transfer (DSSAT) , 2012, Springer Netherlands.

[38]  J. Manyika Big data: The next frontier for innovation, competition, and productivity , 2011 .

[39]  B. T. Rudorff,et al.  Estimativa da produtividade de café com base em um modelo agrometeorológico-espectral , 2010 .

[40]  G. Geoffrey Vining,et al.  An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements , 2010 .

[41]  F. Marin,et al.  Extended time weather forecasts contributes to agricultural productivity estimates , 2010 .

[42]  J. Mielniczuk,et al.  Indicadores da condição hídrica do solo com soja em plantio direto e preparo convencional , 2009 .

[43]  A. Segura‐Carretero,et al.  Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry. , 2008, Journal of chromatography. A.

[44]  Mingcai Zhang,et al.  Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. , 2007, Journal of plant physiology.

[45]  C. Walthall,et al.  Artificial neural networks for corn and soybean yield prediction , 2005 .

[46]  L. Breiman Random Forests , 2001, Machine Learning.

[47]  N. Hopper,et al.  Effect of Cultivar, Temperature and Seed Size on the Germination and Emergence of Soya Beans (Glycine max (L.) Merr.) , 1979 .

[48]  W. Schaafsma,et al.  Classification and discrimination problems with applications, part I , 1977 .

[49]  J. W. Tanner,et al.  Effects of Daylength and Temperature on Soybean Development1 , 1975 .

[50]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[51]  Albert H. Probst,et al.  Effects of Some Environmental Factors on Flower Production and Reproductive Efficiency in Soybeans1 , 1958 .

[52]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[53]  K. Boote,et al.  Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil , 2017 .

[54]  Rubens Augusto Camargo Lamparelli,et al.  Agrometeorological Models for Forecasting Coffee Yield , 2017 .

[55]  Susanne Ebersbach,et al.  Artificial Neural Networks In Real Life Applications , 2016 .

[56]  W. L. Gavassoni,et al.  Associação de fungicidas no controle da antracnose da soja no Mato Grosso do Sul 1 Fungicide association in the control of anthracnose in the soybean in Mato Grosso do Sul , 2016 .

[57]  M. B. P. E. Camargo,et al.  Parametrização de modelo agrometeorológico de estimativa de produtividade do cafeeiro nas condições do Estado de São Paulo , 2006 .

[58]  M. B. P. E. Camargo,et al.  TESTE E ANÁLISE DE MODELOS AGROMETEOROLÓGICOS DE ESTIMATIVA DE PRODUTIVIDADE PARA A CULTURA DA SOJA NA REGIÃO DE RIBEIRÃO PRETO , 1998 .

[59]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[60]  L. Gibson,et al.  Influence of day and night temperature on soybean seed yield , 1996 .

[61]  WATER BALANCE , 2010 .