Soybean yield prediction by machine learning and climate
暂无分享,去创建一个
G. Torsoni | A. G. Chiquitto | Glauco Souza Rolim | Lucas Eduardo Oliveira Aparecido | Gabriela Marins Santos | José Reinaldo Silva Cabral Moraes | G. B. Torsoni | Alisson Gaspar Chiquitto
[1] Tao Ye,et al. Improving Spatial Disaggregation of Crop Yield by Incorporating Machine Learning with Multisource Data: A Case Study of Chinese Maize Yield , 2022, Remote. Sens..
[2] Remigio Berruto,et al. Machine Learning in Agriculture: A Comprehensive Updated Review , 2021, Sensors.
[3] S. Sepúlveda,et al. Use and Adaptations of Machine Learning in Big Data—Applications in Real Cases in Agriculture , 2021, Electronics.
[4] B I Evstatiev,et al. A review on the methods for big data analysis in agriculture , 2021, IOP Conference Series: Materials Science and Engineering.
[5] Suresh Neethirajan. The role of sensors, big data and machine learning in modern animal farming , 2020 .
[6] Witold Pedrycz,et al. A survey on machine learning for data fusion , 2020, Inf. Fusion.
[7] G. B. Torsoni,et al. Caracterização Hídrica Espacial e Sazonal de Mato Grosso do Sul com Dados em Grid , 2020, Revista Brasileira de Meteorologia.
[8] A. Kemanian,et al. The response of maize, sorghum, and soybean yield to growing-phase climate revealed with machine learning , 2020, Environmental Research Letters.
[9] Viktor E. Krebs,et al. Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions , 2020, Current Reviews in Musculoskeletal Medicine.
[10] Imad SASSI,et al. Adaptation of Classical Machine Learning Algorithms to Big Data Context: Problems and Challenges : Case Study: Hidden Markov Models Under Spark , 2019, 2019 1st International Conference on Smart Systems and Data Science (ICSSD).
[11] Lucas Borges Ferreira,et al. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – A new approach , 2019, Journal of Hydrology.
[12] Md Nazirul Islam Sarker,et al. Promoting digital agriculture through big data for sustainable farm management , 2019 .
[13] Zhixin Liu,et al. Affective design using machine learning: a survey and its prospect of conjoining big data , 2018, Int. J. Comput. Integr. Manuf..
[14] Craig S. T. Daughtry,et al. Assessing the Variability of Corn and Soybean Yields in Central Iowa Using High Spatiotemporal Resolution Multi-Satellite Imagery , 2018, Remote. Sens..
[15] Sujatha Srinivasan,et al. An understanding of machine learning techniques in big data analytics: a survey , 2018, International Journal of Engineering & Technology.
[16] P. Sentelhas,et al. Assessment of NASA/POWER satellite‐based weather system for Brazilian conditions and its impact on sugarcane yield simulation , 2018 .
[17] Roheet Bhatnagar,et al. Machine Learning and Big Data Processing: A Technological Perspective and Review , 2018, AMLTA.
[18] D. Lobell,et al. Improving the accuracy of satellite-based high-resolution yield estimation: A test of multiple scalable approaches , 2017 .
[19] Dionysis D. Bochtis,et al. ICT Innovations and Smart Farming , 2017, HAICTA.
[20] E. S. Silva,et al. Lagartas praga das famílias Noctuidae e Erebidae em cultivo de soja no Cerrado de Roraima. , 2017 .
[21] K. O. Adekalu,et al. Soil water storage, yield, water productivity and transpiration efficiency of soybeans (Glyxine max L.Merr) as affected by soil surface management in Ile-Ife, Nigeria , 2017, International Soil and Water Conservation Research.
[22] Miriam A. M. Capretz,et al. Machine Learning With Big Data: Challenges and Approaches , 2017, IEEE Access.
[23] Qi-hui Wu,et al. A survey of machine learning for big data processing , 2016, EURASIP J. Adv. Signal Process..
[24] S. Sonka. Big Data: Fueling the Next Evolution of Agricultural Innovation , 2016 .
[25] Hadi Esmaeilzadeh,et al. TABLA: A unified template-based framework for accelerating statistical machine learning , 2016, 2016 IEEE International Symposium on High Performance Computer Architecture (HPCA).
[26] Euler Cipriani Victorino. Modelagem agrometeorológica para a previsão de produtividade de cafeeiros na região sul do Estado de Minas Gerais , 2015 .
[27] C. Nendel,et al. The soybean yield gap in Brazil – magnitude, causes and possible solutions for sustainable production , 2015, The Journal of Agricultural Science.
[28] George K. Karagiannidis,et al. Efficient Machine Learning for Big Data: A Review , 2015, Big Data Res..
[29] Elías Fereres,et al. AquaCrop: FAO's crop water productivity and yield response model , 2014, Environ. Model. Softw..
[30] Gonzalo Mateos,et al. Modeling and Optimization for Big Data Analytics: (Statistical) learning tools for our era of data deluge , 2014, IEEE Signal Processing Magazine.
[31] Xue-wen Chen,et al. Big Data Deep Learning: Challenges and Perspectives , 2014, IEEE Access.
[32] Walbert Júnior Reis dos Santos,et al. Modis images for agrometeorological monitoring of coffee areas , 2013 .
[33] J. Stape,et al. Köppen's climate classification map for Brazil , 2013 .
[34] Zhiyong Peng,et al. From Big Data to Big Data Mining: Challenges, Issues, and Opportunities , 2013, DASFAA Workshops.
[35] J. Board,et al. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships , 2013 .
[36] Allen C. Cheng,et al. Machine learning on-a-chip: A high-performance low-power reusable neuron architecture for artificial neural networks in ECG classifications , 2012, Comput. Biol. Medicine.
[37] James W. Jones,et al. Improving Soil Fertility Recommendations in Africa using the Decision Support System for Agrotechnology Transfer (DSSAT) , 2012, Springer Netherlands.
[38] J. Manyika. Big data: The next frontier for innovation, competition, and productivity , 2011 .
[39] B. T. Rudorff,et al. Estimativa da produtividade de café com base em um modelo agrometeorológico-espectral , 2010 .
[40] G. Geoffrey Vining,et al. An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements , 2010 .
[41] F. Marin,et al. Extended time weather forecasts contributes to agricultural productivity estimates , 2010 .
[42] J. Mielniczuk,et al. Indicadores da condição hídrica do solo com soja em plantio direto e preparo convencional , 2009 .
[43] A. Segura‐Carretero,et al. Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry. , 2008, Journal of chromatography. A.
[44] Mingcai Zhang,et al. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. , 2007, Journal of plant physiology.
[45] C. Walthall,et al. Artificial neural networks for corn and soybean yield prediction , 2005 .
[46] L. Breiman. Random Forests , 2001, Machine Learning.
[47] N. Hopper,et al. Effect of Cultivar, Temperature and Seed Size on the Germination and Emergence of Soya Beans (Glycine max (L.) Merr.) , 1979 .
[48] W. Schaafsma,et al. Classification and discrimination problems with applications, part I , 1977 .
[49] J. W. Tanner,et al. Effects of Daylength and Temperature on Soybean Development1 , 1975 .
[50] Arthur L. Samuel,et al. Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..
[51] Albert H. Probst,et al. Effects of Some Environmental Factors on Flower Production and Reproductive Efficiency in Soybeans1 , 1958 .
[52] D. Krige. A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .
[53] K. Boote,et al. Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil , 2017 .
[54] Rubens Augusto Camargo Lamparelli,et al. Agrometeorological Models for Forecasting Coffee Yield , 2017 .
[55] Susanne Ebersbach,et al. Artificial Neural Networks In Real Life Applications , 2016 .
[56] W. L. Gavassoni,et al. Associação de fungicidas no controle da antracnose da soja no Mato Grosso do Sul 1 Fungicide association in the control of anthracnose in the soybean in Mato Grosso do Sul , 2016 .
[57] M. B. P. E. Camargo,et al. Parametrização de modelo agrometeorológico de estimativa de produtividade do cafeeiro nas condições do Estado de São Paulo , 2006 .
[58] M. B. P. E. Camargo,et al. TESTE E ANÁLISE DE MODELOS AGROMETEOROLÓGICOS DE ESTIMATIVA DE PRODUTIVIDADE PARA A CULTURA DA SOJA NA REGIÃO DE RIBEIRÃO PRETO , 1998 .
[59] L. S. Pereira,et al. Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .
[60] L. Gibson,et al. Influence of day and night temperature on soybean seed yield , 1996 .
[61] WATER BALANCE , 2010 .