Equivalent Bilevel Programming Form for the Generalized Nash Equilibrium Problem

Generalized Nash Equilibrium problem is widely applied but hard to solve. In this paper, we transform the generalized Nash game into a special bilevel programming with one leader and multi-followers by supposing a suppositional leader, that is an upper decision maker. The relations between their solutions are discussed. We also discuss the further simplification of the bilevel programming. Many conclusions and the further research are drawn at last.

[1]  Michael Patriksson,et al.  A Mathematical Model and Descent Algorithm for Bilevel Traffic Management , 2002, Transp. Sci..

[2]  Xavier Gandibleux,et al.  MultiObjective Programming and Goal Programming , 2003 .

[3]  Hong Zhou,et al.  An extended branch and bound algorithm for linear bilevel programming , 2006, Appl. Math. Comput..

[4]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[5]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[6]  Alejandro Balbás,et al.  Sensitivity Analysis for Convex Multiobjective Programming in Abstract Spaces , 1996 .

[7]  D. Zhu,et al.  A homotopy method for solving bilevel programming problem , 2004 .

[8]  G. A. Ashry On globally convergent multi-objective optimization , 2006, Appl. Math. Comput..

[9]  T. Ichiishi Game theory for economic analysis , 1983 .

[10]  Jean-Pierre Dussault,et al.  A smoothing heuristic for a bilevel pricing problem , 2006, Eur. J. Oper. Res..

[11]  Jose B. Cruz,et al.  Ordinal Games and Generalized Nash and Stackelberg Solutions , 2000 .

[12]  G. Y. Chen,et al.  Existence and continuity of solutions for vector optimization , 1994 .

[13]  A. Bensoussan Points de Nash Dans le Cas de Fonctionnelles Quadratiques et Jeux Differentiels lineaires a N Personnes , 1974 .

[14]  L. Samuelson Evolutionary Games and Equilibrium Selection , 1997 .

[15]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[16]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[17]  Catherine C. Eckel,et al.  The Value of a Smile: Game Theory with a Human Face , 2001 .

[18]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[19]  Mehrdad Tamiz Multi-Objective Programming and Goal Programming , 1996 .

[20]  Maxwell B. Stinchcombe,et al.  Nash equilibrium and generalized integration for infinite normal form games , 2005, Games Econ. Behav..

[21]  Antonino Maugeri,et al.  Variational inequalities and discrete and continuum models of network equilibrium problems , 2002 .

[22]  T. Schelling,et al.  The Strategy of Conflict. , 1961 .

[23]  Zi-You Gao,et al.  An equilibrium model for urban transit assignment based on game theory , 2007, Eur. J. Oper. Res..