SAD phasing of XFEL data depends critically on the error model

SAD phasing of XFEL data is shown to require accurate error estimates from the merged reflection intensities. Various methods of treating the errors are presented, including a best-practice approach that refines error-correction terms using a nonlinear least-squares method.

[1]  Beat Kleiner,et al.  Graphical Methods for Data Analysis , 1983 .

[2]  Changyong Song,et al.  An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography , 2015, Scientific Reports.

[3]  Nicholas K. Sauter,et al.  XFEL diffraction: developing processing methods to optimize data quality , 2015, Journal of synchrotron radiation.

[4]  J. Arthur,et al.  X-ray free-electron lasers , 2005 .

[5]  W. Kabsch Processing of X-ray snapshots from crystals in random orientations , 2014, Acta crystallographica. Section D, Biological crystallography.

[6]  Randy J Read,et al.  Simple algorithm for a maximum-likelihood SAD function. , 2004, Acta crystallographica. Section D, Biological crystallography.

[7]  Paul D. Adams,et al.  Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing , 2016, Acta crystallographica. Section D, Structural biology.

[8]  A. Leslie,et al.  The integration of macromolecular diffraction data. , 2006, Acta crystallographica. Section D, Biological crystallography.

[9]  G. Evans,et al.  Improving signal strength in serial crystallography with DIALS geometry refinement , 2018, Acta crystallographica. Section D, Structural biology.

[10]  Philip R. Evans,et al.  An introduction to data reduction: space-group determination, scaling and intensity statistics , 2011, Acta crystallographica. Section D, Biological crystallography.

[11]  U. Bergmann,et al.  X-Ray Free Electron Lasers: Applications in Materials, Chemistry and Biology , 2017 .

[12]  Nicholas K. Sauter,et al.  A revised partiality model and post-refinement algorithm for X-ray free-electron laser data , 2015, Acta crystallographica. Section D, Biological crystallography.

[13]  Sébastien Boutet,et al.  Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser , 2016, Nature Communications.

[14]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Sébastien Boutet,et al.  Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers , 2014, Nature Methods.

[17]  Wolfgang Kabsch,et al.  Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.

[18]  Andrew Aquila,et al.  Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data , 2016, IUCrJ.

[19]  S. Harrison,et al.  The oscillation method for crystals with very large unit cells , 1979 .

[20]  R. Shoeman,et al.  Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability , 2017, Nature Communications.

[21]  A. McCoy,et al.  Macromolecular X-ray structure determination using weak single-wavelength anomalous data , 2014, Nature Methods.

[22]  Randy J. Read,et al.  Phenix - a comprehensive python-based system for macromolecular structure solution , 2012 .

[23]  Takashi Kameshima,et al.  Native sulfur/chlorine SAD phasing for serial femtosecond crystallography , 2015, Acta crystallographica. Section D, Biological crystallography.

[24]  Kay Diederichs Quantifying instrument errors in macromolecular X-ray data sets. , 2010, Acta crystallographica. Section D, Biological crystallography.

[25]  P. Zwart,et al.  Improved crystal orientation and physical properties from single-shot XFEL stills , 2014, Acta crystallographica. Section D, Biological crystallography.

[26]  Nicholas K. Sauter,et al.  Taking Snapshots of Photosynthetic Water Oxidation Using Femtosecond X-ray Diffraction and Spectroscopy , 2014, Nature Communications.

[27]  Sébastien Boutet,et al.  De novo protein crystal structure determination from X-ray free-electron laser data , 2013, Nature.

[28]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[29]  Garth J. Williams,et al.  Mosquito larvicide BinAB revealed by de novo phasing with an X-ray laser , 2016, Nature.

[30]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[31]  J. S. Rollett,et al.  Statistical descriptors in crystallography: Report of the IUCr Subcommittee on Statistical Descriptors , 1989 .

[32]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[33]  A G Leslie,et al.  Biological Crystallography Integration of Macromolecular Diffraction Data , 2022 .

[34]  Thomas A. White,et al.  Post-refinement method for snapshot serial crystallography , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  Wayne A. Hendrickson,et al.  Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur , 1981, Nature.

[36]  A. Leslie,et al.  Processing and post-refinement of oscillation camera data , 1979 .

[37]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[38]  O. Nureki,et al.  Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent , 2016, Proceedings of the National Academy of Sciences.

[39]  Nicholas K Sauter,et al.  Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals , 2015, eLife.

[40]  Anton Barty,et al.  CrystFEL: a software suite for snapshot serial crystallography , 2012 .

[41]  Sébastien Boutet,et al.  The CSPAD megapixel x-ray camera at LCLS , 2012, Other Conferences.

[42]  D. R. Holland,et al.  Structural analysis of zinc substitutions in the active site of thermolysin , 1995, Protein science : a publication of the Protein Society.