Simultaneous Estimation of Nongaussian Components and Their Correlation Structure
暂无分享,去创建一个
Aapo Hyvärinen | Michael Gutmann | Hayaru Shouno | Hiroaki Sasaki | A. Hyvärinen | M. Gutmann | H. Sasaki | Hayaru Shouno | Michael U Gutmann | Aapo Hyvärinen
[1] A. Ostrowski. Sur La Détermination Des Bornes Inférieures Pour Une Classe Des Déterminants , 1983 .
[2] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[3] D. Heeger. Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.
[4] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..
[5] Andrzej Cichocki,et al. A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.
[6] Teuvo Kohonen,et al. Emergence of invariant-feature detectors in the adaptive-subspace self-organizing map , 1996, Biological Cybernetics.
[7] David J. Field,et al. Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.
[8] Jean-François Cardoso,et al. Multidimensional independent component analysis , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).
[9] Eero P. Simoncelli. Modeling the joint statistics of images in the wavelet domain , 1999, Optics & Photonics.
[10] D. Horga. HANDBOOK OF THE INTERNATIONAL PHONETIC ASSOCIATION. A GUIDE TO THE USE OF THE INTERNATIONAL PHONETIC ALPHABET Cambridge: Cambridge University Press (1999), (204 stranice) , 1999 .
[11] Erkki Oja,et al. Independent component analysis: algorithms and applications , 2000, Neural Networks.
[12] Erkki Oja,et al. Independent component approach to the analysis of EEG and MEG recordings , 2000, IEEE Transactions on Biomedical Engineering.
[13] E. Vajda. Handbook of the International Phonetic Association: A Guide to the Use of the International Phonetic Alphabet , 2000 .
[14] Aapo Hyvärinen,et al. Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces , 2000, Neural Computation.
[15] Eero P. Simoncelli,et al. Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.
[16] Aapo Hyvärinen,et al. Topographic Independent Component Analysis , 2001, Neural Computation.
[17] Marian Stewart Bartlett,et al. Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.
[18] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.
[19] A. Hyvärinen,et al. A multi-layer sparse coding network learns contour coding from natural images , 2002, Vision Research.
[20] A. Hyvärinen,et al. Temporal and spatiotemporal coherence in simple-cell responses: a generative model of natural image sequences , 2003 .
[21] Konrad P. Körding,et al. Sparse Spectrotemporal Coding of Sounds , 2003, EURASIP J. Adv. Signal Process..
[22] Michael I. Jordan,et al. Beyond Independent Components: Trees and Clusters , 2003, J. Mach. Learn. Res..
[23] Aapo Hyvärinen,et al. Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2 , 2004, BMC Neuroscience.
[24] Fabian J. Theis,et al. Blind signal separation into groups of dependent signals using joint block diagonalization , 2005, 2005 IEEE International Symposium on Circuits and Systems.
[25] Michael S. Lewicki,et al. A Hierarchical Bayesian Model for Learning Nonlinear Statistical Regularities in Nonstationary Natural Signals , 2005, Neural Computation.
[26] Aapo Hyvärinen,et al. Estimation of Non-Normalized Statistical Models by Score Matching , 2005, J. Mach. Learn. Res..
[27] Aapo Hyvärinen,et al. A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..
[28] Geoffrey E. Hinton,et al. Topographic Product Models Applied to Natural Scene Statistics , 2006, Neural Computation.
[29] Aapo Hyvärinen,et al. Some extensions of score matching , 2007, Comput. Stat. Data Anal..
[30] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[31] Karen O. Egiazarian,et al. Measuring directional coupling between EEG sources , 2008, NeuroImage.
[32] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[33] Aapo Hyvärinen,et al. Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.
[34] Yair Weiss,et al. The 'tree-dependent components' of natural scenes are edge filters , 2009, NIPS.
[35] H. Hosoya,et al. Sparse codes of harmonic natural sounds and their modulatory interactions , 2009, Network.
[36] Aapo Hyvärinen,et al. A Two-Layer Model of Natural Stimuli Estimated with Score Matching , 2010, Neural Computation.
[37] Aapo Hyvärinen,et al. A Family of Computationally E cient and Simple Estimators for Unnormalized Statistical Models , 2010, UAI.
[38] Junichiro Hirayama,et al. Bregman divergence as general framework to estimate unnormalized statistical models , 2011, UAI.
[39] Aapo Hyvärinen,et al. Extracting Coactivated Features from Multiple Data Sets , 2011, ICANN.
[40] Julien Mairal,et al. Convex and Network Flow Optimization for Structured Sparsity , 2011, J. Mach. Learn. Res..
[41] Peter Dayan,et al. Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics , 2012, PLoS Comput. Biol..
[42] Aapo Hyvärinen,et al. Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics , 2012, J. Mach. Learn. Res..
[43] Yanjun Qi,et al. Learning the Dependency Structure of Latent Factors , 2012, NIPS.
[44] Masato Okada,et al. The topographic unsupervised learning of natural sounds in the auditory cortex , 2012, NIPS.
[45] Aapo Hyvärinen,et al. Correlated topographic analysis: estimating an ordering of correlated components , 2013, Machine Learning.
[46] Aapo Hyvärinen,et al. Estimation of unnormalized statistical models without numerical integration , 2013 .
[47] Aapo Hyvärinen,et al. A three-layer model of natural image statistics , 2013, Journal of Physiology-Paris.
[48] A. Hyvärinen,et al. Non-linear canonical correlation for joint analysis of MEG signals from two subjects , 2013, Front. Neurosci..
[49] Masato Okada,et al. Sparse coding of harmonic vocalization in monkey auditory cortex , 2013, Neurocomputing.
[50] Robin Wilson,et al. Modern Graph Theory , 2013 .
[51] Aapo Hyvärinen,et al. Estimating Dependency Structures for non-Gaussian Components with Linear and Energy Correlations , 2014, AISTATS.
[52] A. Hyvärinen,et al. Spatio-Chromatic Adaptation via Higher-Order Canonical Correlation Analysis of Natural Images , 2014, PloS one.
[53] Valero Laparra,et al. Density Modeling of Images using a Generalized Normalization Transformation , 2015, ICLR.