Simultaneous Estimation of Nongaussian Components and Their Correlation Structure

The statistical dependencies that independent component analysis (ICA) cannot remove often provide rich information beyond the linear independent components. It would thus be very useful to estimate the dependency structure from data. While such models have been proposed, they have usually concentrated on higher-order correlations such as energy (square) correlations. Yet linear correlations are a fundamental and informative form of dependency in many real data sets. Linear correlations are usually completely removed by ICA and related methods so they can only be analyzed by developing new methods that explicitly allow for linearly correlated components. In this article, we propose a probabilistic model of linear nongaussian components that are allowed to have both linear and energy correlations. The precision matrix of the linear components is assumed to be randomly generated by a higher-order process and explicitly parameterized by a parameter matrix. The estimation of the parameter matrix is shown to be particularly simple because using score-matching (Hyvärinen, 2005), the objective function is a quadratic form. Using simulations with artificial data, we demonstrate that the proposed method improves the identifiability of nongaussian components by simultaneously learning their correlation structure. Applications on simulated complex cells with natural image input, as well as spectrograms of natural audio data, show that the method finds new kinds of dependencies between the components.

[1]  A. Ostrowski Sur La Détermination Des Bornes Inférieures Pour Une Classe Des Déterminants , 1983 .

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[4]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[5]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[6]  Teuvo Kohonen,et al.  Emergence of invariant-feature detectors in the adaptive-subspace self-organizing map , 1996, Biological Cybernetics.

[7]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[8]  Jean-François Cardoso,et al.  Multidimensional independent component analysis , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[9]  Eero P. Simoncelli Modeling the joint statistics of images in the wavelet domain , 1999, Optics & Photonics.

[10]  D. Horga HANDBOOK OF THE INTERNATIONAL PHONETIC ASSOCIATION. A GUIDE TO THE USE OF THE INTERNATIONAL PHONETIC ALPHABET Cambridge: Cambridge University Press (1999), (204 stranice) , 1999 .

[11]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[12]  Erkki Oja,et al.  Independent component approach to the analysis of EEG and MEG recordings , 2000, IEEE Transactions on Biomedical Engineering.

[13]  E. Vajda Handbook of the International Phonetic Association: A Guide to the Use of the International Phonetic Alphabet , 2000 .

[14]  Aapo Hyvärinen,et al.  Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces , 2000, Neural Computation.

[15]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[16]  Aapo Hyvärinen,et al.  Topographic Independent Component Analysis , 2001, Neural Computation.

[17]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[18]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[19]  A. Hyvärinen,et al.  A multi-layer sparse coding network learns contour coding from natural images , 2002, Vision Research.

[20]  A. Hyvärinen,et al.  Temporal and spatiotemporal coherence in simple-cell responses: a generative model of natural image sequences , 2003 .

[21]  Konrad P. Körding,et al.  Sparse Spectrotemporal Coding of Sounds , 2003, EURASIP J. Adv. Signal Process..

[22]  Michael I. Jordan,et al.  Beyond Independent Components: Trees and Clusters , 2003, J. Mach. Learn. Res..

[23]  Aapo Hyvärinen,et al.  Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2 , 2004, BMC Neuroscience.

[24]  Fabian J. Theis,et al.  Blind signal separation into groups of dependent signals using joint block diagonalization , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[25]  Michael S. Lewicki,et al.  A Hierarchical Bayesian Model for Learning Nonlinear Statistical Regularities in Nonstationary Natural Signals , 2005, Neural Computation.

[26]  Aapo Hyvärinen,et al.  Estimation of Non-Normalized Statistical Models by Score Matching , 2005, J. Mach. Learn. Res..

[27]  Aapo Hyvärinen,et al.  A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..

[28]  Geoffrey E. Hinton,et al.  Topographic Product Models Applied to Natural Scene Statistics , 2006, Neural Computation.

[29]  Aapo Hyvärinen,et al.  Some extensions of score matching , 2007, Comput. Stat. Data Anal..

[30]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[31]  Karen O. Egiazarian,et al.  Measuring directional coupling between EEG sources , 2008, NeuroImage.

[32]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .

[33]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[34]  Yair Weiss,et al.  The 'tree-dependent components' of natural scenes are edge filters , 2009, NIPS.

[35]  H. Hosoya,et al.  Sparse codes of harmonic natural sounds and their modulatory interactions , 2009, Network.

[36]  Aapo Hyvärinen,et al.  A Two-Layer Model of Natural Stimuli Estimated with Score Matching , 2010, Neural Computation.

[37]  Aapo Hyvärinen,et al.  A Family of Computationally E cient and Simple Estimators for Unnormalized Statistical Models , 2010, UAI.

[38]  Junichiro Hirayama,et al.  Bregman divergence as general framework to estimate unnormalized statistical models , 2011, UAI.

[39]  Aapo Hyvärinen,et al.  Extracting Coactivated Features from Multiple Data Sets , 2011, ICANN.

[40]  Julien Mairal,et al.  Convex and Network Flow Optimization for Structured Sparsity , 2011, J. Mach. Learn. Res..

[41]  Peter Dayan,et al.  Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics , 2012, PLoS Comput. Biol..

[42]  Aapo Hyvärinen,et al.  Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics , 2012, J. Mach. Learn. Res..

[43]  Yanjun Qi,et al.  Learning the Dependency Structure of Latent Factors , 2012, NIPS.

[44]  Masato Okada,et al.  The topographic unsupervised learning of natural sounds in the auditory cortex , 2012, NIPS.

[45]  Aapo Hyvärinen,et al.  Correlated topographic analysis: estimating an ordering of correlated components , 2013, Machine Learning.

[46]  Aapo Hyvärinen,et al.  Estimation of unnormalized statistical models without numerical integration , 2013 .

[47]  Aapo Hyvärinen,et al.  A three-layer model of natural image statistics , 2013, Journal of Physiology-Paris.

[48]  A. Hyvärinen,et al.  Non-linear canonical correlation for joint analysis of MEG signals from two subjects , 2013, Front. Neurosci..

[49]  Masato Okada,et al.  Sparse coding of harmonic vocalization in monkey auditory cortex , 2013, Neurocomputing.

[50]  Robin Wilson,et al.  Modern Graph Theory , 2013 .

[51]  Aapo Hyvärinen,et al.  Estimating Dependency Structures for non-Gaussian Components with Linear and Energy Correlations , 2014, AISTATS.

[52]  A. Hyvärinen,et al.  Spatio-Chromatic Adaptation via Higher-Order Canonical Correlation Analysis of Natural Images , 2014, PloS one.

[53]  Valero Laparra,et al.  Density Modeling of Images using a Generalized Normalization Transformation , 2015, ICLR.