The ultimate physical limits of privacy

Among those who make a living from the science of secrecy, worry and paranoia are just signs of professionalism. Can we protect our secrets against those who wield superior technological powers? Can we trust those who provide us with tools for protection? Can we even trust ourselves, our own freedom of choice? Recent developments in quantum cryptography show that some of these questions can be addressed and discussed in precise and operational terms, suggesting that privacy is indeed possible under surprisingly weak assumptions.

[1]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[2]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[3]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[4]  R. Renner,et al.  Experimental bound on the maximum predictive power of physical theories. , 2012, Physical review letters.

[5]  Matthew McKague,et al.  Quantum Information Processing with Adversarial Devices , 2010, 1006.2352.

[6]  Christian Kurtsiefer,et al.  Full-field implementation of a perfect eavesdropper on a quantum cryptography system. , 2010, Nature communications.

[7]  Joshua A. Slater,et al.  An experimental test of all theories with predictive power beyond quantum theory , 2011, 1105.0133.

[8]  Renato Renner,et al.  Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. , 2007, Physical review letters.

[9]  Hoi-Kwong Lo,et al.  Phase-Remapping Attack in Practical Quantum Key Distribution Systems , 2006, ArXiv.

[10]  E. Biham,et al.  Security of Quantum Cryptography against Collective Attacks , 1996, quant-ph/9605007.

[11]  Lluis Masanes,et al.  Universally-composable privacy amplification from causality constraints , 2008, Physical review letters.

[12]  Henri Gilbert,et al.  Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings , 2010, EUROCRYPT.

[13]  A. Zeilinger,et al.  Bell violation using entangled photons without the fair-sampling assumption , 2012, Nature.

[14]  Rodrigo Gallego,et al.  Full randomness from arbitrarily deterministic events , 2012, Nature Communications.

[15]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[16]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[17]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[18]  Umesh V. Vazirani,et al.  Classical command of quantum systems , 2013, Nature.

[19]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[20]  Amnon Ta-Shma,et al.  On the limits of privacy amplification against non-signalling memory attacks , 2012, ArXiv.

[21]  Nicolas Gisin,et al.  Various quantum nonlocality tests with a commercial two-photon entanglement source , 2011 .

[22]  D. Kahn The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet , 1967 .

[23]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[24]  Dax Enshan Koh,et al.  Effects of reduced measurement independence on Bell-based randomness expansion. , 2012, Physical review letters.

[25]  Anindya De,et al.  Trevisan's Extractor in the Presence of Quantum Side Information , 2009, SIAM J. Comput..

[26]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[27]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[28]  Roger Colbeck,et al.  Free randomness can be amplified , 2011, Nature Physics.

[29]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[30]  Robert König,et al.  Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.

[31]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[32]  S. Braunstein,et al.  Wringing out better bell inequalities , 1990 .

[33]  Adrian Kent,et al.  Memory attacks on device-independent quantum cryptography. , 2012, Physical review letters.

[34]  Karol Horodecki,et al.  Realistic noise-tolerant randomness amplification using finite number of devices , 2016, Nature Communications.

[35]  R. Renner Symmetry of large physical systems implies independence of subsystems , 2007 .

[36]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[37]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[38]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .

[39]  R. Renner,et al.  Device-Independent Quantum Key Distribution with Local Bell Test , 2012, 1208.0023.

[40]  Karol Horodecki,et al.  Robust Device-Independent Randomness Amplification with Few Devices , 2013, 1310.4544.

[41]  G. S. Vernam Cipher printing telegraph systems: For secret wire and radio telegraphic communications , 2022, Journal of the A.I.E.E..

[42]  H. Weinfurter,et al.  Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors , 2011, 1101.5289.

[43]  A. Acín,et al.  Secure device-independent quantum key distribution with causally independent measurement devices. , 2010, Nature communications.

[44]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[45]  Renato Renner,et al.  Device-Independent Quantum Key Distribution with Commuting Measurements , 2010, ArXiv.

[46]  Adam D. Smith,et al.  Leftover Hashing Against Quantum Side Information , 2011, IEEE Transactions on Information Theory.

[47]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[48]  Matison,et al.  Experimental Test of Local Hidden-Variable Theories , 1972 .

[49]  Renato Renner,et al.  Efficient Device-Independent Quantum Key Distribution , 2010, EUROCRYPT.

[50]  P. Pearle Hidden-Variable Example Based upon Data Rejection , 1970 .

[51]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[52]  W. Tittel,et al.  Real-world two-photon interference and proof-of-principle QKD immune to detector attacks , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[53]  Dominic Mayers,et al.  Unconditional security in quantum cryptography , 1998, JACM.

[54]  N. Lütkenhaus Security against individual attacks for realistic quantum key distribution , 2000 .

[55]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[56]  Renato Renner,et al.  The impossibility of non-signaling privacy amplification , 2009, Theor. Comput. Sci..

[57]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[58]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[59]  Dale K. Pace,et al.  The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet , 1998 .

[60]  Ekert,et al.  Practical quantum cryptography based on two-photon interferometry. , 1992, Physical review letters.

[61]  E. Poe,et al.  A Few Words on Secret Writing , 2011 .

[62]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[63]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[64]  Roger Colbeck,et al.  No extension of quantum theory can have improved predictive power , 2010, Nature communications.

[65]  N. Gisin,et al.  Violation of Bell Inequalities by Photons More Than 10 km Apart , 1998, quant-ph/9806043.

[66]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[67]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.