Genetic architecture of circulating lipid levels

Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total cholesterol (TC) are important heritable risk factors for cardiovascular disease. Although genome-wide association studies (GWASs) of circulating lipid levels have identified numerous loci, a substantial portion of the heritability of these traits remains unexplained. Evidence of unexplained genetic variance can be detected by combining multiple independent markers into additive genetic risk scores. Such polygenic scores, constructed using results from the ENGAGE Consortium GWAS on serum lipids, were applied to predict lipid levels in an independent population-based study, the Rotterdam Study-II (RS-II). We additionally tested for evidence of a shared genetic basis for different lipid phenotypes. Finally, the polygenic score approach was used to identify an alternative genome-wide significance threshold before pathway analysis and those results were compared with those based on the classical genome-wide significance threshold. Our study provides evidence suggesting that many loci influencing circulating lipid levels remain undiscovered. Cross-prediction models suggested a small overlap between the polygenic backgrounds involved in determining LDL-C, HDL-C and TG levels. Pathway analysis utilizing the best polygenic score for TC uncovered extra information compared with using only genome-wide significant loci. These results suggest that the genetic architecture of circulating lipids involves a number of undiscovered variants with very small effects, and that increasing GWAS sample sizes will enable the identification of novel variants that regulate lipid levels.

Christian Gieger | Igor Rudan | Harry Campbell | Nicholas G Martin | Ulf Gyllensten | Caroline Hayward | Samuli Ripatti | Albert Hofman | Peter M Visscher | Taina Rantanen | Yurii Aulchenko | André G Uitterlinden | Massimo Mangino | Dorret I Boomsma | Gonneke Willemsen | Nancy L Pedersen | Jaakko Kaprio | Jouke-Jan Hottenga | Aaron Isaacs | Tim Spector | Angela Döring | Peter P Pramstaller | Najaf Amin | Mark McCarthy | Kirsten Ohm Kyvik | Marjo-Riitta Jarvelin | M. Jarvelin | C. Gieger | P. Visscher | A. Hofman | A. Uitterlinden | T. Spector | M. McCarthy | M. Mangino | N. Martin | J. Whitfield | J. Witteman | J. Kaprio | H. Wichmann | S. Wild | B. Penninx | G. Willemsen | S. Ripatti | G. Montgomery | A. Janssens | A. Döring | I. Rudan | D. Boomsma | J. Hottenga | A. Isaacs | P. Magnusson | N. Pedersen | T. Rantanen | K. Pietiläinen | B. Oostra | N. Amin | C. Hayward | H. Campbell | James F. Wilson | Y. Aulchenko | A. Demirkan | Å. Johansson | A. Hicks | U. Gyllensten | K. Kyvik | P. Pramstaller | C. Duijn | E. J. Geus | Ben A Oostra | James F Wilson | Andrew A Hicks | Åsa Johansson | Brenda W Penninx | John B Whitfield | Grant W Montgomery | Cornelia M van Duijn | Heinz-Erich Wichmann | Kirsi H Pietiläinen | Sarah H Wild | Leena Peltonen-Palotie | L. Peltonen-Palotie | Jacqueline Witteman | A Cecile JW Janssens | Ayşe Demirkan | Patrik KE Magnusson | Johannes J Smith | Eco JC de Geus | Fernando Rivadeneria | Birgit Hoehne | Jo Smith | Fernando Rivadeneria | Birgit Hoehne | A. Uitterlinden | A. Hofman | B. Oostra | D. Boomsma | M. McCarthy | N. Martin

[1]  L. de Lumley,et al.  Lipoprotein lipase (LPL) deficiency: a new patient homozygote for the preponderant mutation Gly188Glu in the human LPL gene and review of reported mutations: 75 % are clustered in exons 5 and 6. , 2001, Annales de genetique.

[2]  Dolores Corella,et al.  Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans , 2008, Nature Genetics.

[3]  R. Collins,et al.  Common variants at 30 loci contribute to polygenic dyslipidemia , 2009, Nature Genetics.

[4]  Jonathan D. Cohen,et al.  Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. , 2003, The Journal of clinical investigation.

[5]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[6]  Richard H. Myers,et al.  Familial Lipoprotein Disorders in Patients With Premature Coronary Artery Disease , 1992, Circulation.

[7]  P. Elliott,et al.  Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides , 2008, Nature Genetics.

[8]  Peter M Visscher,et al.  Sizing up human height variation , 2008, Nature Genetics.

[9]  A. Dobson,et al.  Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project populations , 2000, The Lancet.

[10]  Christian Gieger,et al.  Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts , 2009, Nature Genetics.

[11]  P. Visscher,et al.  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder , 2009, Nature.

[12]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[13]  Jonathan C. Cohen,et al.  A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. , 2006, American journal of human genetics.

[14]  P. Talmud Rare APOA5 mutations--clinical consequences, metabolic and functional effects: an ENID review. , 2007, Atherosclerosis.

[15]  Monique M. B. Breteler,et al.  The Rotterdam Study: 2016 objectives and design update , 2015, European Journal of Epidemiology.

[16]  C. Hoggart,et al.  Genome-wide association analysis of metabolic traits in a birth cohort from a founder population , 2008, Nature Genetics.

[17]  W. Kannel,et al.  Factors of risk in the development of coronary heart disease--six year follow-up experience. The Framingham Study. , 1961, Annals of internal medicine.

[18]  R. Collins,et al.  Newly identified loci that influence lipid concentrations and risk of coronary artery disease , 2008, Nature Genetics.

[19]  Mario Falchi,et al.  Genome-wide Association Study Identifies Genes for Biomarkers of Cardiovascular Disease: Serum Urate and Dyslipidemia , 2022 .

[20]  Jonathan C. Cohen,et al.  Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Elston,et al.  The Collaborative Lipid Research Clinics Program Family Study. IV. Familial associations of plasma lipids and lipoproteins. , 1984, American journal of epidemiology.

[22]  N. Wray,et al.  Genetic risk profiles for depression and anxiety in adult and elderly cohorts , 2010, Molecular Psychiatry.

[23]  D. Strachan,et al.  LDL-cholesterol concentrations: a genome-wide association study , 2008, The Lancet.

[24]  G. Jones,et al.  Novel rare mutations and promoter haplotypes in ABCA1 contribute to low‐HDL‐C levels , 2008, Clinical genetics.

[25]  Anushya Muruganujan,et al.  PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification , 2003, Nucleic Acids Res..

[26]  Robert A. Hegele,et al.  Plasma lipoproteins: genetic influences and clinical implications , 2009, Nature Reviews Genetics.

[27]  Cornelia M. van Duijn,et al.  Genetic Scoring Analysis: a way forward in Genome Wide Association Studies? , 2009, European Journal of Epidemiology.

[28]  Jonathan C. Cohen,et al.  Multiple Rare Alleles Contribute to Low Plasma Levels of HDL Cholesterol , 2004, Science.

[29]  J. Witteman,et al.  Heritabilities, apolipoprotein E, and effects of inbreeding on plasma lipids in a genetically isolated population: The Erasmus Rucphen Family Study , 2007, European Journal of Epidemiology.

[30]  M. Campbell,et al.  Erratum: PANTHER: A browsable database of gene products organized by biological function, using curated protein family and subfamily classification (Nucleic Acids Research (2003) vol. 31 (334-341)) , 2003 .

[31]  Tanya M. Teslovich,et al.  Biological, Clinical, and Population Relevance of 95 Loci for Blood Lipids , 2010, Nature.

[32]  R. Levy,et al.  Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. , 1972, Clinical chemistry.

[33]  A. Garg,et al.  Inherited lipodystrophies and hypertriglyceridemia , 2009, Current opinion in lipidology.