Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation

The multi-frequency capability of the Planck satellite provides information both on the integrated history of star formation (via the cosmic infrared background, or CIB) and on the distribution of dark matter (via the lensing e ect on the cosmic microwave background, or CMB). The conjunction of these two unique probes allows us to measure directly the connection between dark and luminous matter in the high redshift (1 z 3) Universe. We use a three-point statistic optimized to detect the correlation between these two tracers. Following a thorough discussion of possible contaminants and a suite of consistency tests, using lens reconstructions at 100, 143 and 217 GHz and CIB measurements at 100‐857 GHz, we report the first detection of the correlation between the CIB and CMB lensing. The well matched redshift distribution of these two signals leads to a detection significance with a peak value of 42 at 545 GHz and a correlation as high as 80 % across these two tracers. Our full set of multifrequency measurements (both CIB auto- and CIB-lensing cross-spectra) are consistent with a simple halo-based model, with a characteristic mass scale for the halos hosting CIB sources of log10 (M=M ) = 10:5 0:6. Leveraging the frequency dependence of our signal, we isolate the high redshift contribution to the CIB, and constrain the star formation rate (SFR) density at z 1. We measure directly the SFR density with around 2 significance for three redshift bins between z = 1 and 7, thus opening a new window into the study of the formation of stars at early times.

G. W. Pratt | C. B. Netterfield | J. Aumont | S. Masi | N. Ponthieu | D. L. Clements | M. Rowan-Robinson | J. R. Bond | G. Giardino | L. Toffolatti | J. J. Bock | F. Pasian | B. P. Crill | J. E. Gudmundsson | W. A. Holmes | G. Savini | W. Hovest | A. Catalano | M. Frailis | J. Borrill | A. Gruppuso | E. Hivon | L. Montier | G. Morgante | P. Natoli | F. Piacentini | M. Remazeilles | R. Stompor | A. Coulais | F. Cuttaia | L. Terenzi | O. Dor'e | M. Maris | S. Galeotta | M. Bersanelli | C. Burigana | N. Mandolesi | R. Rebolo | E. P. S. Shellard | S. Plaszczynski | E. Pointecouteau | B. Maffei | F. Nati | L. Pagano | W. C. Jones | V. Stolyarov | G. Polenta | F. Pajot | I. Ristorcelli | F. Perrotta | S. R. Hildebrandt | C. A. Oxborrow | A. Moneti | D. Santos | H. K. Eriksen | A. J. Banday | C. R. Lawrence | R. J. Laureijs | J. Bobin | D. Harrison | A. Mennella | P. B. Lilje | D. Herranz | B. D. Wandelt | L. Knox | K. Ganga | D. Hanson | G. Lagache | P. Vielva | N. Aghanim | X. Dupac | J. P. Rachen | A. Zacchei | D. Maino | L. Perotto | M. Douspis | S. D. M. White | F. Sureau | C. Rosset | A. Benoit | F.-X. D'esert | J. F. Mac'ias-P'erez | J. G. Bartlett | J. Delabrouille | S. Matarrese | L. Valenziano | A. Benoit-L'evy | A. Zonca | T. S. Kisner | N. Vittorio | T. Poutanen | M. Arnaud | M. Tomasi | A. H. Jaffe | O. Forni | G. Patanchon | P. Serra | A. Challinor | H. C. Chiang | S. Donzelli | F. Couchot | S. Mitra | M. Juvela | D. J. Marshall | D. Tavagnacco | F. Boulanger | P. M. Lubin | P. Mazzotta | A. Gregorio | R. B. Barreiro | B. Rusholme | D. Scott | C. Renault | D. Munshi | R. Keskitalo | E. Franceschi | A. Hornstrup | T. Riller | L. Danese | C. Baccigalupi | L. Mendes | H. U. Norgaard-Nielsen | J. M. Diego | S. Ricciardi | M. Kunz | H. Kurki-Suonio | L. Popa | J.-L. Starck | J. Cardoso | J. Tuovinen | R. Laureijs | F. Pasian | L. Valenziano | H. Kurki-Suonio | P. Lilje | N. Aghanim | J. Bartlett | C. Baccigalupi | K. Benabed | M. Kunz | G. Morgante | M. Douspis | J. Delouis | M. Frailis | A. Zacchei | S. Colombi | J. Lesgourgues | A. Melchiorri | J. Bobin | O. Forni | T. Ensslin | E. Hivon | A. Banday | F. Hansen | M. Reinecke | M. Hobson | A. Lasenby | M. Bridges | A. Challinor | B. Wandelt | F. Bouchet | S. Matarrese | J. Borrill | P. Bernardis | A. Jaffe | C. Netterfield | R. Stompor | J. Bond | B. Crill | K. Ganga | W. Jones | S. Masi | F. Piacentini | S. Prunet | G. Efstathiou | M. Juvela | J. Diego | S. Mitra | S. White | A. Benoit-Lévy | R. Rebolo | A. Coulais | T. Poutanen | A. Gregorio | M. Ashdown | F. Sureau | C. Lawrence | B. Rusholme | E. Pierpaoli | T. Kisner | F. Atrio-Barandela | T. Jaffe | H. Eriksen | F. Couchot | S. Plaszczynski | F. Boulanger | H. Nørgaard-Nielsen | R. Davies | P. Ade | C. Armitage-Caplan | M. Arnaud | J. Aumont | E. Battaner | A. Benoit | J. Bernard | M. Bersanelli | P. Bielewicz | A. Bonaldi | M. Bucher | C. Burigana | R. C. Butler | A. Catalano | A. Chamballu | L. Chiang | H. Chiang | S. Church | D. Clements | L. Colombo | A. Curto | F. Cuttaia | L. Danese | A. Rosa | G. Zotti | J. Delabrouille | F. D'esert | H. Dole | S. Donzelli | O. Dor'e | X. Dupac | F. Finelli | E. Franceschi | S. Galeotta | M. Giard | G. Giardino | Y. Giraud-H'eraud | J. Gonz'alez-Nuevo | K. M. G'orski | S. Gratton | A. Gruppuso | D. Hanson | D. Harrison | S. Henrot-Versill'e | C. Hern'andez-Monteagudo | D. Herranz | S. Hildebrandt | W. Holmes | A. Hornstrup | W. Hovest | K. Huffenberger | E. Keihanen | R. Keskitalo | R. Kneissl | J. Knoche | L. Knox | G. Lagache | A. Lahteenmaki | J. Lamarre | R. Leonardi | M. Liguori | M. Linden-Vørnle | M. L'opez-Caniego | P. Lubin | J. Mac'ias-P'erez | B. Maffei | D. Maino | N. Mandolesi | M. Maris | D. Marshall | P. Martin | E. Mart'inez-Gonz'alez | F. Matthai | P. Mazzotta | L. Mendes | A. Mennella | M. Migliaccio | M. Miville-Deschênes | A. Moneti | L. Montier | D. Mortlock | D. Munshi | P. Naselsky | F. Nati | P. Natoli | F. Noviello | I. Novikov | S. Osborne | F. Paci | L. Pagano | F. Pajot | D. Paoletti | G. Patanchon | O. Perdereau | L. Perotto | F. Perrotta | M. Piat | D. Pietrobon | E. Pointecouteau | G. Polenta | N. Ponthieu | L. Popa | G. Pratt | G. Prezeau | J. Puget | J. Rachen | M. Remazeilles | C. Renault | S. Ricciardi | T. Riller | I. Ristorcelli | G. Rocha | C. Rosset | G. Roudier | M. Rowan-Robinson | M. Sandri | D. Santos | G. Savini | M. Seiffert | E. Shellard | L. Spencer | J. Starck | R. Sudiwala | R. Sunyaev | D. Sutton | A. Suur-Uski | J. Sygnet | J. Tauber | D. Tavagnacco | L. Terenzi | L. Toffolatti | M. Tomasi | M. Tristram | M. Tucci | J. Valiviita | B. Tent | P. Vielva | F. Villa | N. Vittorio | L. Wade | D. Yvon | A. Zonca | J. Gudmundsson | J. Le'on-Tavares | V. Stolyarov | P. Serra | M. Béthermin | D. Novikov | F. Lacasa | S. Basak | A. Bonaldi | F. Villa | M. Sandri | M. Ashdown | S. Basak | K. Benabed | J.-P. Bernard | P. Bielewicz | F. R. Bouchet | L. P. L. Colombo | A. Curto | P. de Bernardis | A. de Rosa | G. de Zotti | J.-M. Delouis | G. Efstathiou | T. A. Ensslin | F. Finelli | M. Giard | J. Gonz'alez-Nuevo | F. K. Hansen | E. Keihanen | A. Lahteenmaki | J.-M. Lamarre | A. Lasenby | M. Liguori | M. L'opez-Caniego | P. G. Martin | E. Mart'inez-Gonz'alez | A. Melchiorri | M. Migliaccio | M.-A. Miville-Deschenes | P. Naselsky | D. Paoletti | O. Perdereau | J.-L. Puget | M. Reinecke | G. Rocha | G. Roudier | A.-S. Suur-Uski | J. A. Tauber | M. Tristram | J. Valiviita | P. R. Christensen | Planck Collaboration P. A. R. Ade | C. Armitage-Caplan | F. Atrio-Barandela | E. Battaner | M. Bridges | M. Bucher | J.-F. Cardoso | A. Chamballu | L.-Y Chiang | S. Church | S. Colombi | R. D. Davies | H. Dole | S. Gratton | M. Hobson | K. M. Huffenberger | T. R. Jaffe | R. Kneissl | J. Knoche | R. Leonardi | J. Lesgourgues | F. Matthai | D. Mortlock | F. Noviello | I. Novikov | S. Osborne | F. Paci | M. Piat | E. Pierpaoli | D. Pietrobon | S. Prunet | M. D. Seiffert | L. D. Spencer | R. Sudiwala | R. Sunyaev | D. Sutton | J.-F. Sygnet | M. Tucci | J. Tuovinen | B. Van Tent | L. A. Wade | D. Yvon | Y. Giraud-H'eraud | S. Henrot-Versill'e | C. Hern'andez-Monteagudo | M. Linden-Vornle | G. Pr'ezeau | J. Le'on-Tavares | F. Lacasa | M. Bethermin | D. Novikov | J. Bock | D. Scott | P. Christensen | S. White | M. Rowan‐Robinson | D. Scott | S. Mitra | D. Scott | G. Rocha | G. Pr'ezeau | J. Bond | D. Harrison | C. Lawrence | D. Marshall

[1]  J. Tinker,et al.  WHAT DOES CLUSTERING TELL US ABOUT THE BUILDUP OF THE RED SEQUENCE? , 2009, 0909.1325.

[2]  G. W. Pratt,et al.  Planck 2013 results - XXVI. Background geometry and topology of the Universe , 2013, 1303.5086.

[3]  Rainer K. Sachs,et al.  Perturbations of a cosmological model and angular variations of the microwave background , 1967 .

[4]  Julian Borrill,et al.  Planck pre-launch status: Expected LFI polarisation capability , 2010 .

[5]  P. A. R. Ade,et al.  ANGULAR POWER SPECTRA OF THE MILLIMETER-WAVELENGTH BACKGROUND LIGHT FROM DUSTY STAR-FORMING GALAXIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4315.

[6]  C. A. Oxborrow,et al.  Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.

[7]  C. A. Oxborrow,et al.  Planck 2013 results. I. Overview of products and scientific results , 2013, 1502.01582.

[8]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[9]  G. W. Pratt,et al.  Planck 2013 results. XVII. Gravitational lensing by large-scale structure , 2013, 1303.5077.

[10]  G. Lagache,et al.  Implications of the cosmic infrared background for light production and the star formation history in the Universe , 2000 .

[11]  F. Pasian,et al.  Planck pre-launch status: Design and description of the Low Frequency Instrument , 2010, 1001.3321.

[12]  L. Toffolatti,et al.  Planck early results. III. First assessment of the Low Frequency , 2011, 1101.2038.

[13]  Lloyd Knox,et al.  Correlations in the Far-Infrared Background , 1999, astro-ph/9906399.

[14]  Edward J. Wollack,et al.  Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope. , 2011, Physical review letters.

[15]  T. Rodet,et al.  Correlated Anisotropies in the Cosmic Far-Infrared Background Detected by the Multiband Imaging Photometer for Spitzer: Constraint on the Bias , 2007, 0707.2443.

[16]  Oliver Zahn,et al.  Detection of gravitational lensing in the cosmic microwave background , 2007, 0705.3980.

[17]  Relativistic Corrections to the Sunyaev-Zeldovich Effect for Clusters of Galaxies. IV. Analytic Fitting Formula for the Numerical Results , 1999, astro-ph/9912008.

[18]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[19]  P. A. R. Ade,et al.  Planck early results - XXIV. Dust in the diffuse interstellar medium and the galactic halo , 2011, 1101.2036.

[20]  E. Pierpaoli,et al.  Point source contamination in CMB non-Gaussianity analyses , 2008, 0803.1161.

[21]  R. B. Barreiro,et al.  Planck 2013 results. III. LFI systematic uncertainties , 2013, 1303.5064.

[22]  Asantha Cooray,et al.  CMBPol Mission Concept Study: Gravitational Lensing , 2008, 0811.3916.

[23]  N. Aghanim,et al.  Characterization of the non-Gaussianity of radio and IR point sources at CMB frequencies , 2011, 1107.2251.

[24]  Y. Zeldovich,et al.  Small-scale fluctuations of relic radiation , 1970, Astrophysics and Space Science.

[25]  Joanna Dunkley The Atacama Cosmology Telescope: Cosmological Parameters , 2010 .

[26]  O. Dor'e,et al.  Modeling the evolution of infrared galaxies: clustering of galaxies in the cosmic infrared background , 2011, 1110.0395.

[27]  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 16/07/00 THE FAR-INFRARED BACKGROUND CORRELATION WITH CMB LENSING , 2002 .

[28]  G. Giardino,et al.  Planck early results. V. The Low Frequency Instrument data processing , 2011, 1101.2040.

[29]  C. B. Netterfield,et al.  Planck early results - I. The Planck mission , 2011, 1101.2022.

[30]  A. Challinor,et al.  CMB temperature lensing power reconstruction , 2010, 1008.4403.

[31]  G. W. Pratt,et al.  Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.

[32]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Cross-Correlation of Cosmic Microwave Background Lensing and Quasars , 2012, 1207.4543.

[33]  Y. Zel’dovich,et al.  The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement , 1980 .

[34]  R. B. Barreiro,et al.  Planck 2013 results. IV. Low Frequency Instrument beams and window functions , 2013, 1303.5065.

[35]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[36]  R. B. Barreiro,et al.  Planck 2013 results. V. LFI calibration , 2013, 1303.5066.

[37]  C. A. Oxborrow,et al.  Planck 2013 results - VIII. HFI photometric calibration and mapmaking , 2013, 1303.5069.

[38]  J OHN F. B EACOM ON THE NORMALISATION OF THE COSMIC STAR FORMATION HISTORY , 2006 .

[39]  G. W. Pratt,et al.  Planck2013 results. XXIX. ThePlanckcatalogue of Sunyaev-Zeldovich sources , 2013, Astronomy & Astrophysics.

[40]  M. Lueker,et al.  A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS , 2011, 1111.0932.

[41]  R. B. Barreiro,et al.  Planck early results. XXIII. The first all-sky survey of Galactic cold clumps , 2011 .

[42]  G. Giardino,et al.  Planck pre-launch status: the Planck-LFI programme , 2010, 1001.2657.

[43]  G. W. Pratt,et al.  Planck 2013 results Special feature Planck 2013 results . XXV . Searches for cosmic strings and other topological defects , 2014 .

[44]  M. Lueker,et al.  A MEASUREMENT OF THE SECONDARY-CMB AND MILLIMETER-WAVE-FOREGROUND BISPECTRUM USING 800 SQUARE DEGREES OF SOUTH POLE TELESCOPE DATA , 2014 .

[45]  Guilaine Lagache,et al.  IRIS : A NEW GENERATION OF IRAS MAPS , 2005 .

[46]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[47]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[48]  C. A. Oxborrow,et al.  Planck2013 results. XXVIII. ThePlanckCatalogue of Compact Sources , 2013, Astronomy & Astrophysics.

[49]  Wayne Hu,et al.  Cosmic microwave background lensing reconstruction on the full sky , 2003 .

[50]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[51]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[52]  R. B. Barreiro,et al.  Planckearly results. VII. The Early Release Compact Source Catalogue , 2011, Astronomy & Astrophysics.

[53]  T. Maciaszek,et al.  Planck pre-launch status: The HFI instrument, from specification to actual performance , 2010 .

[54]  G. W. Pratt,et al.  Planck 2013 results. IX. HFI spectral response , 2013, 1303.5070.

[55]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[56]  C. A. Oxborrow,et al.  Planck 2013 results. XIV. Zodiacal emission , 2013, 1303.5074.

[57]  Edmundo Marcelo Arnal,et al.  A high sensitivity Hi survey of the sky at δ ≤ -25° , 2000 .

[58]  A. Cooray,et al.  A CONDITIONAL LUMINOSITY FUNCTION MODEL OF THE COSMIC FAR-INFRARED BACKGROUND ANISOTROPY POWER SPECTRUM , 2012, 1206.1324.

[59]  James J. Bock,et al.  Planck Pre-Launch Status: The Planck Mission , 2010 .

[60]  R. B. Barreiro,et al.  Planck early results. IV. First assessment of the High Frequency Instrument in-flight performance , 2011, 1101.2039.

[61]  W. B. Burton,et al.  TENTATIVE DETECTION OF A COSMIC FAR-INFRARED BACKGROUND WITH COBE , 1996 .

[62]  E.,et al.  THE COBE DIFFUSE INFRARED BACKGROUND EXPERIMENT SEARCH FOR THE COSMIC INFRARED BACKGROUND . I . LIMITS AND DETECTIONS , 1998 .

[63]  Planck 2013 results. XXXI. Consistency of the Planck data , 2014 .

[64]  D. Elbaz,et al.  THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE z = 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS , 2012, 1210.1035.

[65]  A. Finoguenov,et al.  THE INTEGRATED STELLAR CONTENT OF DARK MATTER HALOS , 2011, 1109.0010.

[66]  Relativistic Corrections to the Sunyaev-Zeldovich Effect for Clusters of Galaxies. III. Polarization Effect , 1998, astro-ph/9812376.

[67]  J. Dunkley,et al.  Constraining thermal dust emission in distant galaxies with number counts and angular power spectra , 2012, 1210.6697.

[68]  C. A. Oxborrow,et al.  Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove , 2013, 1303.5087.

[69]  G. W. Pratt,et al.  Astronomy & Astrophysics manuscript no. planck˙isw c ○ ESO 2013 , 2013 .

[70]  D. L. Clements,et al.  HerMES: deep number counts at 250 μm, 350 μm and 500 μm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background , 2012, 1203.1925.

[71]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.

[72]  Edward J. Wollack,et al.  Atacama Cosmology Telescope: A measurement of the thermal Sunyaev-Zel'dovich effect using the skewness of the CMB temperature distribution , 2012, 1203.6633.

[73]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[74]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[75]  Douglas Scott,et al.  A UNIFIED EMPIRICAL MODEL FOR INFRARED GALAXY COUNTS BASED ON THE OBSERVED PHYSICAL EVOLUTION OF DISTANT GALAXIES , 2012, 1208.6512.

[76]  C. A. Oxborrow,et al.  Planck 2013 results. XIII. Galactic CO emission , 2013, 1303.5073.

[77]  D. Hanson,et al.  Extragalactic foreground contamination in temperature-based CMB lens reconstruction , 2013, 1310.7547.

[78]  Microwave background bispectrum. II. A probe of the low redshift universe , 1998, astro-ph/9811251.

[79]  L. Knox,et al.  The Age of the Universe and the Cosmological Constant Determined from Cosmic Microwave Background Anisotropy Measurements , 2001 .

[80]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections , 1998, astro-ph/9806167.

[81]  Edward J. Wollack,et al.  Evidence of galaxy cluster motions with the kinematic Sunyaev-Zel'dovich effect. , 2012, Physical review letters.

[82]  R. Kennicutt Fundamental Aspects of Star Formation in Galaxies , 1998 .

[83]  R. B. Barreiro,et al.  Planck early results. XVIII. The power spectrum of cosmic infrared background anisotropies , 2011, 1101.2028.

[84]  James J. Bock,et al.  BLAST: CORRELATIONS IN THE COSMIC FAR-INFRARED BACKGROUND AT 250, 350, AND 500 μm REVEAL CLUSTERING OF STAR-FORMING GALAXIES , 2009, 0904.1200.

[85]  Princeton,et al.  Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter haloes , 2012, 1211.1009.

[86]  R. B. Barreiro,et al.  Planck 2013 results. II. Low Frequency Instrument data processing , 2013, 1303.5063.

[87]  H. Nguyen,et al.  HerMES: COSMIC INFRARED BACKGROUND ANISOTROPIES AND THE CLUSTERING OF DUSTY STAR-FORMING GALAXIES , 2012, 1208.5049.

[88]  C. A. Oxborrow,et al.  Planck2013 results. XII. Diffuse component separation , 2013, Astronomy & Astrophysics.

[89]  C. A. Oxborrow,et al.  Planck2013 results. VI. High Frequency Instrument data processing , 2013, Astronomy & Astrophysics.

[90]  M. Pérault,et al.  Diffuse infrared emission from the galaxy. I: Solar neighborhood , 1988 .

[91]  O. Dor'e,et al.  Where stars form and live at high redshift: clues from the infrared , 2012, 1201.0546.

[92]  C. B. Netterfield,et al.  Planck early results. II. The thermal performance of Planck , 2011, 1101.2023.

[93]  A. Slosar,et al.  Correlation between galactic HI and the cosmic microwave background , 2007, 0706.1703.

[94]  Anthony Challinor,et al.  The shape of the CMB lensing bispectrum , 2011, 1101.2234.

[95]  C. Bennett,et al.  The Spectrum of the Extragalactic Far-Infrared Background from the COBE FIRAS Observations , 1998, astro-ph/9803021.

[96]  S. Ho,et al.  Correlation of CMB with large-scale structure. II. Weak lensing , 2008, 0801.0644.

[97]  P. Ade,et al.  Planck pre-launch status: High Frequency Instrument polarization calibration , 2010, 1004.2595.

[98]  Evidence for dust emission in the Warm Ionised Medium using WHAM data , 1999, astro-ph/9911355.

[99]  R. B. Barreiro,et al.  Planck early results. XIII. Statistical properties of extragalactic radio sources in the Planck Early Release Compact Source Catalogue , 2011, 1101.2044.

[100]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[101]  Z. Haiman,et al.  Improved models for cosmic infrared background anisotropies: new constraints on the infrared galaxy population , 2011, 1109.1522.

[102]  Guilaine Lagache,et al.  Modeling the evolution of infrared galaxies: a parametric backward evolution model , 2010, 1010.1150.

[103]  W. B. Burton,et al.  The dust/gas correlation at high Galactic latitude , 1996 .

[104]  G. W. Pratt,et al.  Astronomy & Astrophysics manuscript no. HFI˙Transfer˙Function˙and˙Beams c ○ ESO 2013 , 2013 .

[105]  M. Lueker,et al.  A MEASUREMENT OF THE CORRELATION OF GALAXY SURVEYS WITH CMB LENSING CONVERGENCE MAPS FROM THE SOUTH POLE TELESCOPE , 2012, 1203.4808.

[106]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[107]  Frank J. Kerr,et al.  Atlas of Galactic Neutral Hydrogen , 1997 .

[108]  Adrian T. Lee,et al.  A MEASUREMENT OF GRAVITATIONAL LENSING OF THE MICROWAVE BACKGROUND USING SOUTH POLE TELESCOPE DATA , 2012, 1202.0546.

[109]  G. W. Pratt,et al.  Planck 2015 results - XVII. Constraints on primordial non-Gaussianity , 2014 .

[110]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[111]  Matias Zaldarriaga,et al.  Direct signature of an evolving gravitational potential from the cosmic microwave background , 1999 .

[112]  D. Elbaz,et al.  Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 1011 solar masses , 2011, Nature.