Topics in computational algebraic number theory

. We describe practical algorithms from computational algebraic number theory, with applications to class field theory. These include basic arithmetic, approximation and uniformizers, discrete logarithms and computation of class fields. All algorithms have been implemented in the Pari/Gp system.

[1]  Karim Belabas,et al.  A relative van Hoeij algorithm over number fields , 2004, J. Symb. Comput..

[2]  H. Gangl,et al.  Generators and relations for K_2 O_F. , 2004 .

[3]  Claus Fieker,et al.  Computing class fields via the Artin map , 2001, Math. Comput..

[4]  Claus-Peter Schnorr,et al.  Segment LLL-Reduction with Floating Point Orthogonalization , 2001, CaLC.

[5]  Claus Fieker,et al.  On Reconstruction of Algebraic Numbers , 2000, ANTS.

[6]  Henri Cohen,et al.  Computing the Hilbert class field of real quadratic fields , 2000, Math. Comput..

[7]  Lionel Ducos Optimizations of the subresultant algorithm , 2000 .

[8]  Phong Q. Nguyen A Montgomery-Like Square Root for the Number Field Sieve , 1998, ANTS.

[9]  Henri Cohen,et al.  Subexponential Algorithms for Class Group and Unit Computations , 1997, J. Symb. Comput..

[10]  Michael E. Pohst,et al.  On Computing Subfields , 1997, J. Symb. Comput..

[11]  Claus Fieker,et al.  Kant V4 , 1997, J. Symb. Comput..

[12]  Jeffrey Shallit,et al.  Factor refinement , 1993, SODA '90.

[13]  Claus-Peter Schnorr,et al.  Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.

[14]  K. McCurley,et al.  A rigorous subexponential algorithm for computation of class groups , 1989 .

[15]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[16]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[17]  Ruth E. Chambers Topics , 1973, Seminars in Perinatology.

[18]  E. Hannum "PROOF" , 1934, Francis W. Parker School Studies in Education.

[19]  Daniel J. Bernstein,et al.  Factoring into coprimes in essentially linear time , 2005, J. Algorithms.

[20]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[21]  Bill Allombert,et al.  An efficient algorithm for the computation of Galois automorphisms , 2004, Math. Comput..

[22]  Sebastian Pauli,et al.  A fast algorithm for polynomial factorization over $\mathbb {Q}_p$ , 2002 .

[23]  Sebastian,et al.  A fast algorithm for polynomial factorization over Q p , 2001 .

[24]  Henri Cohen,et al.  Advanced topics in computational number theory , 2000 .

[25]  Friedrich Eisenbrand,et al.  On factor refinement in number fields , 1999, Math. Comput..

[26]  Jürgen Klüners On computing subfields. A detailed description of the algorithm , 1998 .

[27]  R. Marije Elkenbracht-Huizing,et al.  An Implementation of the Number Field Sieve , 1996, Exp. Math..

[28]  Wieb Bosma,et al.  Computational Algebra and Number Theory , 1995 .

[29]  Peter L. Montgomery,et al.  Square roots of products of algebraic numbers , 1994 .

[30]  H. W. Lenstra,et al.  Approximatting rings of integers in number fields. , 1994 .

[31]  H. W. Lenstra,et al.  Approximating rings of integers in number fields , 1994 .

[32]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[33]  Xavier Gourdon Algorithmique du theoreme fondamental de l'algebre , 1993 .

[34]  Henri Cohen,et al.  A polynomial reduction algorithm , 1991 .

[35]  J. Buchmann A subexponential algorithm for the determination of class groups and regulators of algebraic number fields , 1990 .

[36]  H. Lenstra,et al.  Factoring polynomials with rational coeficients , 1982 .

[37]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 2 , 1981 .

[38]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .