Validation of tropospheric NO2 column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations

Abstract. Multi-axis differential optical absorption spectroscopy (MAX-DOAS) and direct sun NO2 vertical column network data are used to investigate the accuracy of tropospheric NO2 column measurements of the GOME-2 instrument on the MetOp-A satellite platform and the OMI instrument on Aura. The study is based on 23 MAX-DOAS and 16 direct sun instruments at stations distributed worldwide. A method to quantify and correct for horizontal dilution effects in heterogeneous NO2 field conditions is proposed. After systematic application of this correction to urban sites, satellite measurements are found to present smaller biases compared to ground-based reference data in almost all cases. We investigate the seasonal dependence of the validation results as well as the impact of using different approaches to select satellite ground pixels in coincidence with ground-based data. In optimal comparison conditions (satellite pixels containing the station) the median bias between satellite tropospheric NO2 column measurements and the ensemble of MAX-DOAS and direct sun measurements is found to be significant and equal to −34 % for GOME-2A and −24 % for OMI. These biases are further reduced to −24 % and −18 % respectively, after application of the dilution correction. Comparisons with the QA4ECV satellite product for both GOME-2A and OMI are also performed, showing less scatter but also a slightly larger median tropospheric NO2 column bias with respect to the ensemble of MAX-DOAS and direct sun measurements.

[1]  Martina M. Friedrich,et al.  Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels , 2020 .

[2]  K. Kreher,et al.  Intercomparison of NO2, O4, O3 and HCHO slant column measurements by MAX-DOAS and zenith-sky UV–visible spectrometers during CINDI-2 , 2020, Atmospheric Measurement Techniques.

[3]  Martina M. Friedrich,et al.  Validation of TROPOMI tropospheric NO2 columns using dual-scan MAX-DOAS measurements in Uccle, Brussels , 2020 .

[4]  L. G. Tilstra,et al.  An improved air mass factor calculation for nitrogen dioxide measurements from the Global Ozone Monitoring Experiment-2 (GOME-2) , 2020 .

[5]  J. Burrows,et al.  Validation of Aura-OMI QA4ECV NO2 climate data records with ground-based DOAS networks: the role of measurement and comparison uncertainties , 2020, Atmospheric Chemistry and Physics.

[6]  Martina M. Friedrich,et al.  Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign , 2020, Atmospheric Measurement Techniques.

[7]  N. Krotkov,et al.  Assessment of NO2 observations during DISCOVER-AQ and KORUS-AQ field campaigns , 2019, Atmospheric measurement techniques.

[8]  L. G. Tilstra,et al.  An improved air mass factor calculation for NO2 measurements from GOME-2 , 2019 .

[9]  D. Jacob,et al.  Using satellite observations of tropospheric NO2 columns to infer long-term trends in US NOx emissions: the importance of accounting for the free tropospheric NO2 background , 2019, Atmospheric Chemistry and Physics.

[10]  Jassim A. Al-Saadi,et al.  Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban areas using high-resolution airborne data. , 2019, Atmospheric measurement techniques.

[11]  Maria Tzortziou,et al.  Underestimation of column NO2 amounts from the OMI satellite compared to diurnally varying ground-based retrievals from multiple PANDORA spectrometer instruments , 2019, Atmospheric Measurement Techniques.

[12]  K. F. Boersma,et al.  Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations , 2019, Atmospheric Chemistry and Physics.

[13]  J. S. Henzing,et al.  Full-azimuthal imaging-DOAS observations of NO2 and O4 during CINDI-2 , 2019, Atmospheric Measurement Techniques.

[14]  Martina M. Friedrich,et al.  Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies using synthetic data , 2019, Atmospheric Measurement Techniques.

[15]  G. Carmichael,et al.  A top-down assessment using OMI NO2 suggests an underestimate in the NOx emissions inventory in Seoul, South Korea, during KORUS-AQ , 2019, Atmospheric Chemistry and Physics.

[16]  Pinhua Xie,et al.  Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments , 2019, Atmospheric measurement techniques.

[17]  Ji-Ho Park,et al.  Regional characteristics of NO2 column densities from Pandora observations during the MAPS-Seoul campaign. , 2018, Aerosol and air quality research.

[18]  Steffen Beirle,et al.  An improved total and tropospheric NO2 column retrieval for GOME-2 , 2016, Atmospheric Measurement Techniques.

[19]  Steffen Beirle,et al.  Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project , 2018, Atmospheric Measurement Techniques.

[20]  Claudia Rivera,et al.  NO2 vertical profiles and column densities from MAX-DOAS measurements in Mexico City , 2018, Atmospheric Measurement Techniques.

[21]  S. Beirle,et al.  The Mainz profile algorithm (MAPA) , 2018, Atmospheric Measurement Techniques.

[22]  J. Burrows,et al.  Near-surface and path-averaged mixing ratios of NO2 derived from car DOAS zenith-sky and tower DOAS off-axis measurements in Vienna: a case study , 2018, Atmospheric Chemistry and Physics.

[23]  Maria Tzortziou,et al.  Atmospheric Trace Gas (NO2 and O3) Variability in South Korean Coastal Waters, and Implications for Remote Sensing of Coastal Ocean Color Dynamics , 2018, Remote. Sens..

[24]  T. Takamura,et al.  Simultaneous observations by sky radiometer and MAX-DOAS for characterization of biomass burning plumes in central Thailand in January–April 2016 , 2018, Atmospheric Measurement Techniques.

[25]  Jay R. Herman,et al.  The first evaluation of formaldehyde column observations by improved Pandora spectrometers during the KORUS-AQ field study. , 2018, Atmospheric chemistry and physics.

[26]  R. Cohen,et al.  Evaluation of version 3.0B of the BEHR OMI NO2 product , 2019, Atmospheric Measurement Techniques.

[27]  Jay R. Herman,et al.  NO2 and HCHO measurements in Korea from 2012 to 2016 from Pandora spectrometer instruments compared with OMI retrievals and with aircraft measurements during the KORUS-AQ campaign , 2018, Atmospheric Measurement Techniques.

[28]  Xiong Liu,et al.  Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator over Houston, Texas , 2018, Atmospheric Measurement Techniques.

[29]  K. F. Boersma,et al.  Improved slant column density retrieval of nitrogen dioxide and formaldehyde for OMI and GOME-2A from QA4ECV: intercomparison, uncertainty characterisation, and trends , 2018, Atmospheric Measurement Techniques.

[30]  J. Burrows,et al.  BOREAS – a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases , 2018, Atmospheric Measurement Techniques.

[31]  Dylan B. A. Jones,et al.  Unexpected slowdown of US pollutant emission reduction in the past decade , 2018, Proceedings of the National Academy of Sciences.

[32]  A. Bais,et al.  MAX-DOAS NO 2 observations over Guangzhou, China; ground-based and satellite comparisons , 2017 .

[33]  David G. Streets,et al.  A high-resolution and observationally constrained OMI NO 2 satellite retrieval , 2017 .

[34]  Martine De Mazière,et al.  The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives , 2017 .

[35]  Glen Jaross,et al.  In-flight performance of the Ozone Monitoring Instrument. , 2017, Atmospheric measurement techniques.

[36]  Adrian Doicu,et al.  The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor , 2017 .

[37]  I. D. Smedt,et al.  Validation of OMI, GOME-2A and GOME-2B tropospheric NO 2 , SO 2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: investigation of the effects of priori profiles and aerosols on the satellite products , 2017 .

[38]  Piet Stammes,et al.  Surface reflectivity climatologies from UV to NIR determined from Earth observations by GOME‐2 and SCIAMACHY , 2017 .

[39]  Characterisation of Central-African aerosol and trace-gas emissionsbased on MAX-DOAS measurements and model simulations overBujumbura, Burundi , 2017 .

[40]  A. Bais,et al.  MAX-DOAS NO2 observations over Guangzhou, China; ground-based and satellite comparisons , 2017 .

[41]  Pieternel F. Levelt,et al.  Improvements to the OMI O 2 –O 2 operational cloud algorithm and comparisons with ground-based radar–lidar observations , 2016 .

[42]  R. Cohen,et al.  Effects of daily meteorology on the interpretation of space-based remote sensing of NO 2 , 2016 .

[43]  A. Thompson,et al.  Spatial and temporal variability of ground and satellite column measurements of NO2 and O3 over the Atlantic Ocean during the Deposition of Atmospheric Nitrogen to Coastal Ecosystems Experiment , 2016 .

[44]  Yang Wang,et al.  Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals , 2016 .

[45]  I. D. Smedt,et al.  Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China , 2016 .

[46]  A. Bais,et al.  Comparisons of ground-based tropospheric NO 2 MAX-DOAS measurements to satellite observations with the aid of an air quality model over the Thessaloniki area, Greece , 2016 .

[47]  Yang Wang,et al.  In-operation field-of-view retrieval (IFR) for satellite and ground-based DOAS-type instruments applying coincident high-resolution imager data , 2016 .

[48]  Steffen Beirle,et al.  Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements , 2016 .

[49]  Vitali E. Fioletov,et al.  Sulfur dioxide (SO 2 ) vertical column density measurements by Pandoraspectrometer over the Canadian oil sands , 2016 .

[50]  K. F. Boersma,et al.  The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation , 2016 .

[51]  J. Burrows,et al.  Slant column MAX-DOAS measurements of nitrogen dioxide, formaldehyde, glyoxal and oxygen dimer in the urban environment of Athens , 2016 .

[52]  Steffen Beirle,et al.  MAX-DOAS measurements and satellite validation of tropospheric NO2 and SO2 vertical column densities at a rural site of North China , 2016 .

[53]  Steffen Beirle,et al.  The STRatospheric Estimation Algorithm from Mainz (STREAM):estimating stratospheric NO 2 from nadir-viewing satellites by weighted convolution , 2016 .

[54]  David G. Streets,et al.  A space‐based, high‐resolution view of notable changes in urban NOx pollution around the world (2005–2014) , 2016 .

[55]  S. Beirle,et al.  Cloud and aerosol classification for 2.5 years of MAX-DOAS observations in Wuxi (China) and comparison to independent data sets , 2015 .

[56]  P. Levelt,et al.  OMI tropospheric NO 2 profiles from cloud slicing: constraints on surface emissions, convective transport and lightning NO x , 2015 .

[57]  Christophe Lerot,et al.  Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons , 2015 .

[58]  Nicolas Theys,et al.  Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations , 2015 .

[59]  Mingxu Liu,et al.  Influence of aerosols and surface reflectance on satellite NO 2 retrieval: seasonal and spatial characteristics and implications for NO x emission constraints , 2015 .

[60]  Pius Lee,et al.  OMI NO 2 column densities over North American urban cities: the effect of satellite footprint resolution , 2015 .

[61]  David G. Streets,et al.  Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015 , 2015 .

[62]  Michael Eisinger,et al.  The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing – an overview , 2015 .

[63]  J. Veefkind,et al.  Impact of aerosols on the OMI tropospheric NO 2 retrievals over industrialized regions: how accurate is the aerosol correction of cloud-free scenes via a simple cloud model? , 2015 .

[64]  A. Uchiyama,et al.  Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer inTsukuba, Japan , 2015 .

[65]  Christos Zerefos,et al.  Overview of the O3M SAF GOME-2 operational atmospheric composition and UV radiation data products and data availability , 2015 .

[66]  R. Volkamer,et al.  The CU 2-D-MAX-DOAS instrument – Part 1: Retrieval of 3-D distributions of NO 2 and azimuth-dependent OVOC ratios , 2015 .

[67]  J. Fung,et al.  Development of a custom OMI NO 2 data product for evaluating biases in a regional chemistry transport model , 2015 .

[68]  P. Levelt,et al.  OMI tropospheric NO2 profiles from cloud slicing , 2015 .

[69]  J. Herman,et al.  The use of NO 2 absorption cross section temperature sensitivity to derive NO 2 profile temperature and stratospheric–tropospheric column partitioning from visible direct-sun DOAS measurements , 2014 .

[70]  James F. Gleason,et al.  Evaluation of OMI operational standard NO 2 column retrievals using in situ and surface-based NO 2 observations , 2014 .

[71]  F. Hendrick,et al.  Improved spectral fitting of nitrogen dioxide from OMI in the 405–465 nm window , 2014 .

[72]  F. Hendrick,et al.  A simple and versatile cloud-screening method for MAX-DOAS retrievals , 2014 .

[73]  Christian Hermans,et al.  MAX-DOAS observations of aerosols, formaldehyde and nitrogen dioxide in the Beijing area: comparison of two profile retrieval approaches , 2014 .

[74]  Jihyo Chong,et al.  Long-term MAX-DOAS network observations of NO 2 in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations , 2014 .

[75]  Glenn S. Diskin,et al.  Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export , 2014 .

[76]  J. Herman,et al.  Atmospheric NO2 dynamics and impact on ocean color retrievals in urban nearshore regions , 2014 .

[77]  J. Burrows,et al.  Validation strategy for satellite observations of tropospheric reactive gases , 2014 .

[78]  J. Herman,et al.  Spatial and temporal variability of ozone and nitrogen dioxide over a major urban estuarine ecosystem , 2015, Journal of Atmospheric Chemistry.

[79]  Ryan D’Souza,et al.  Comparison of tropospheric NO 2 vertical columns in an urban environment using satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements , 2013 .

[80]  James F. Gleason,et al.  A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments : applications to OMI , 2013 .

[81]  E. Cuevas,et al.  Long-path averaged mixing ratios of O 3 and NO 2 in the free troposphere from mountain MAX-DOAS , 2013 .

[82]  Pinhua Xie,et al.  Observations of SO 2 and NO 2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010 , 2013 .

[83]  Yang Wang,et al.  A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy , 2013 .

[84]  R. Martin,et al.  Improved Satellite Retrievals of NO2 and SO2 over the Canadian Oil Sands and Comparisons with Surface Measurements , 2013 .

[85]  R. Martin,et al.  Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide , 2013 .

[86]  F. Hendrick,et al.  Corrigendum to "MAX-DOAS formaldehyde slant column measurements during CINDI: intercomparison and analysis improvement" published in Atmos. Meas. Tech., 6, 167–185, 2013 , 2013 .

[87]  A. Bais,et al.  Phaethon: A System for the Validation of Satellite Derived Atmospheric Columns of Trace Gases , 2013 .

[88]  J. Lambert,et al.  Combining and Merging Water Vapour Observations: A Multi-dimensional Perspective on Smoothing and Sampling Issues , 2013 .

[89]  Christian Hermans,et al.  Four years of ground-based MAX-DOAS observations of HONO and NO 2 in the Beijing area , 2012 .

[90]  R. Volkamer,et al.  Parameterizing radiative transfer to convert MAX-DOAS dSCDs into near-surface box averaged mixing ratios and vertical profiles , 2012 .

[91]  K. F. Boersma,et al.  Quantitative bias estimates for tropospheric NO 2 columns retrieved from SCIAMACHY, OMI, and GOME-2 using a common standard for East Asia , 2012 .

[92]  Steffen Beirle,et al.  Tropospheric No 2 Vertical Column Densities over Beijing Printer-friendly Version Interactive Discussion Atmospheric Chemistry and Physics Discussions Tropospheric No 2 Vertical Column Densities over Beijing: Results of the First Three-years of Ground-based Max-doas Measurements (2008–2011) and Sate , 2022 .

[93]  Martyn P. Chipperfield,et al.  Analysis of stratospheric NO2 trends above Jungfraujoch using ground-based UV-visible, FTIR, and satellite nadir observations , 2012 .

[94]  Hisahiro Takashima,et al.  MAX-DOAS formaldehyde slant column measurements during CINDI: intercomparison and analysis improvement , 2012 .

[95]  Henk Eskes,et al.  TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications , 2012 .

[96]  S. Yilmaz Retrieval of Atmospheric Aerosol and Trace Gas Vertical Profiles using Multi-Axis Differential Optical Absorption Spectroscopy , 2012 .

[97]  Niklaus Kämpfer,et al.  Monitoring Atmospheric Water Vapour: Ground-Based Remote Sensing and In-situ Methods , 2012 .

[98]  S. Beirle,et al.  Determination of tropospheric vertical columns of NO 2 and aerosol optical properties in a rural setting using MAX-DOAS , 2011 .

[99]  Steffen Beirle,et al.  Inversion of tropospheric profiles of aerosol extinction and HCHO and NO 2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets , 2011 .

[100]  Steffen Beirle,et al.  Estimation of NO x emissions from Delhi using Car MAX-DOAS observations and comparison with OMI satellite data , 2011 .

[101]  Henk Eskes,et al.  An improved tropospheric NO 2 column retrieval algorithm for the Ozone Monitoring Instrument , 2011 .

[102]  J. Burrows,et al.  Influence of low spatial resolution a priori data on tropospheric NO 2 satellite retrievals , 2011 .

[103]  Eric Bucsela,et al.  A high spatial resolution retrieval of NO 2 column densities from OMI: method and evaluation , 2011 .

[104]  Pieter Valks,et al.  Operational total and tropospheric NO 2 column retrieval for GOME-2 , 2011 .

[105]  Andreas Hilboll,et al.  An improved NO 2 retrieval for the GOME-2 satellite instrument , 2011 .

[106]  Dominik Brunner,et al.  Eight-component retrievals from ground-based MAX-DOAS observations , 2011 .

[107]  Henk Eskes,et al.  Evaluation of stratospheric NO2 retrieved from the Ozone Monitoring Instrument : intercomparison, diurnal cycle and trending , 2011 .

[108]  Steffen Beirle,et al.  The Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI): design, execution, and early results , 2011 .

[109]  Piet Stammes,et al.  Retrieval of tropospheric NO 2 using the MAX-DOAS method combined with relative intensity measurements for aerosol correction , 2010 .

[110]  Jay R. Herman,et al.  Direct Sun measurements of NO2 column abundances from Table Mountain, California: Intercomparison of low- and high-resolution spectrometers , 2010 .

[111]  F. Hendrick,et al.  Multiple wavelength retrieval of tropospheric aerosol optical properties from MAXDOAS measurements in Beijing , 2010 .

[112]  M. Allaart,et al.  The development of a nitrogen dioxide sonde , 2010 .

[113]  Christoph Kern,et al.  Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcanic gas monitoring: Network layout and instrument description , 2010 .

[114]  Min Shao,et al.  MAX-DOAS measurements in southern China: retrieval of aerosol extinctions and validation using ground-based in-situ data , 2010 .

[115]  Gilles Foret,et al.  Comparison of OMI NO2 tropospheric columns with an ensemble of global and European regional air quality models , 2009 .

[116]  Maria Tzortziou,et al.  NO2 column amounts from ground‐based Pandora and MFDOAS spectrometers using the direct‐sun DOAS technique: Intercomparisons and application to OMI validation , 2009 .

[117]  James F. Gleason,et al.  NO2 columns in the western United States observed from space and simulated by a regional chemistry model and their implications for NOx emissions , 2009 .

[118]  N. Theys,et al.  O3M SAF VALIDATION REPORT , 2009 .

[119]  K. F. Boersma,et al.  Testing and improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX-B validation campaigns , 2008 .

[120]  H. Tanimoto,et al.  Validation of OMI tropospheric NO 2 column data using MAX-DOAS measurements deep inside the North China Plain in June 2006: Mount Tai Experiment 2006 , 2008 .

[121]  Yugo Kanaya,et al.  Dual-wavelength aerosol vertical profile measurements by MAX-DOAS at Tsukuba, Japan , 2008 .

[122]  M. V. Roozendael,et al.  FRESCO+: an improved O 2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals , 2008 .

[123]  Quintus Kleipool,et al.  Earth surface reflectance climatology from 3 years of OMI data , 2008 .

[124]  Steffen Beirle,et al.  Tropospheric NO 2 column densities deduced from zenith-sky DOAS measurements in Shanghai, China, and their application to satellite validation , 2008 .

[125]  Piet Stammes,et al.  Effective cloud fractions from the Ozone Monitoring Instrument: Theoretical framework and validation , 2008 .

[126]  James F. Gleason,et al.  Validation of OMI tropospheric NO2 column densities using direct‐Sun mode Brewer measurements at NASA Goddard Space Flight Center , 2008 .

[127]  R. L. Curier,et al.  The 2005 and 2006 DANDELIONS NO2 and aerosol intercomparison campaigns , 2008 .

[128]  Henk Eskes,et al.  Intercomparison of SCIAMACHY and OMI Tropospheric NO2 Columns: Observing the Diurnal Evolution of Chemistry and Emissions from Space , 2008 .

[129]  J. Veefkind,et al.  Validation of Ozone Monitoring Instrument nitrogen dioxide columns , 2008 .

[130]  H. Tanimoto,et al.  Validation of OMI tropospheric NO 2 column data using MAX-DOAS measurements deep inside the North China Plain in June 2006 , 2008 .

[131]  Yugo Kanaya,et al.  First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements , 2008 .

[132]  Ulrich Platt,et al.  Differential optical absorption spectroscopy , 2008 .

[133]  F. Hendrick,et al.  Retrieval of stratospheric and tropospheric BrO columns from multi-axis DOAS measurements at Reunion Island (21 S, 56 E) , 2007 .

[134]  T. Wagner,et al.  MAX-DOAS detection of glyoxal during ICARTT 2004 , 2006 .

[135]  Ulrich Platt,et al.  MAX‐DOAS O4 measurements: A new technique to derive information on atmospheric aerosols: 2. Modeling studies , 2006 .

[136]  R. Martin,et al.  Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000 , 2006 .

[137]  Pawan K. Bhartia,et al.  Science objectives of the ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[138]  Heikki Saari,et al.  The ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[139]  J. Burrows,et al.  Measurements of nitrogen dioxide total column amounts using a Brewer double spectrophotometer in direct Sun mode , 2006 .

[140]  T. Wagner,et al.  Multi axis differential optical absorption spectroscopy (MAX-DOAS) of gas and aerosol distributions. , 2005, Faraday discussions.

[141]  P. J. Huber Robust Statistics: Huber/Robust Statistics , 2005 .

[142]  Ulrich Platt,et al.  MAX‐DOAS O4 measurements: A new technique to derive information on atmospheric aerosols—Principles and information content , 2004 .

[143]  Piet Stammes,et al.  Cloud pressure retrieval using the O2‐O2 absorption band at 477 nm , 2004 .

[144]  Henk Eskes,et al.  Error analysis for tropospheric NO2 retrieval from space , 2004 .

[145]  John P. Burrows,et al.  MAX-DOAS measurements of formaldehyde in the Po-Valley , 2004 .

[146]  John P. Burrows,et al.  MAX-DOAS measurements of atmospheric trace gases in Ny- ˚ Alesund - Radiative transfer studies and their application , 2004 .

[147]  P. Zieger,et al.  Multi axis differential optical absorption spectroscopy (MAX-DOAS) , 2003 .

[148]  U. Platt,et al.  Detection of bromine monoxide in a volcanic plume , 2003, Nature.

[149]  Ulrich Platt,et al.  Observations of BrO and its vertical distribution during surface ozone depletion at Alert , 2002 .

[150]  J. Lamarque,et al.  A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2 , 2001 .

[151]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[152]  Michael Eisinger,et al.  The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results , 1999 .

[153]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[154]  Liu Xinwu This is How the Discussion Started , 1981 .