Black box model identification of nonlinear input–output models: A Wiener–Hammerstein benchmark

Abstract This work analyzes the performance of several black box nonlinear model identification techniques for input–output models with polynomial nonlinearities on a benchmark identification problem. The case study, proposed in Schoukens, Suykens, and Ljung (2008) , concerns a nonlinear SISO electronic system with a Wiener–Hammerstein structure, originally documented in Vandersteen (1997) . The objective being the obtainment of an accurate simulation model, capable of replicating the dynamic behavior of the system without using past measured output data, various output-error approaches have been tested and compared with more standard equation-error techniques. The provided analysis shows that excellent modeling performance can be obtained with these methods even without explicitly taking into account the block structure of the nonlinear system.

[1]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[2]  Marco Lovera,et al.  NARX Model Identification with Error Filtering , 2008 .

[3]  Marcello Farina,et al.  Identification of polynomial input/output recursive models with simulation error minimisation methods , 2012, Int. J. Syst. Sci..

[4]  Marcello Farina,et al.  An iterative algorithm for simulation error based identification of polynomial input–output models using multi-step prediction , 2010, Int. J. Control.

[5]  L. A. Aguirre,et al.  Improved structure selection for nonlinear models based on term clustering , 1995 .

[6]  Stephen A. Billings,et al.  An alternative solution to the model structure selection problem , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[7]  L. Piroddi,et al.  NARX model selection based on simulation error minimisation and LASSO , 2010 .

[8]  L. Piroddi,et al.  An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .

[9]  L. A. Aguirre,et al.  Prediction and simulation errors in parameter estimation for nonlinear systems , 2010 .

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  Marco Lovera,et al.  ON THE ROLE OF PRE-FILTERING IN NONLINEAR SYSTEM IDENTIFICATION , 2005 .

[12]  S. Billings,et al.  Orthogonal parameter estimation algorithm for non-linear stochastic systems , 1988 .

[13]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[14]  L. Piroddi,et al.  A pruning method for the identification of polynomial NARMAX models , 2003 .

[15]  Alireza Karimi,et al.  On the Consistency of Certain Identification Methods for Linear Parameter Varying Systems , 2008 .

[16]  Marcello Farina,et al.  Simulation error minimization identification based on multi‐stage prediction , 2011 .

[17]  S. A. Billings,et al.  Spectral analysis for non-linear systems, Part I: Parametric non-linear spectral analysis , 1989 .

[18]  Sheng Chen,et al.  Model selection approaches for non-linear system identification: a review , 2008, Int. J. Syst. Sci..

[19]  Luigi Piroddi,et al.  Simulation error minimisation methods for NARX model identification , 2008, Int. J. Model. Identif. Control..

[20]  Er-Wei Bai,et al.  A TWO-STAGE ALGORITHM FOR IDENTIFICATION OF NONLINEAR DYNAMIC SYSTEMS , 2006 .

[21]  S. Billings,et al.  Recursive algorithm for computing the frequency response of a class of non-linear difference equation models , 1989 .

[22]  Stephen A. Billings,et al.  Spectral analysis for non-linear systems, Part II: Interpretation of non-linear frequency response functions , 1989 .

[23]  Johan A. K. Suykens,et al.  Wiener-Hammerstein Benchmark , 2009 .

[24]  Marco Lovera,et al.  On the role of prefiltering in nonlinear system identification , 2005, IEEE Transactions on Automatic Control.

[25]  L. A. Aguirre,et al.  Dynamical effects of overparametrization in nonlinear models , 1995 .

[26]  Marcello Farina,et al.  Simulation Error Minimization–Based Identification of Polynomial Input–Output Recursive Models , 2009 .

[27]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[28]  George W. Irwin,et al.  A fast nonlinear model identification method , 2005, IEEE Transactions on Automatic Control.