Time-Variant Frequency Response Function Measurement in the Presence of Missing Data

Missing data are an important issue in large-scale low-cost wireless sensor networks. In these measurement applications, sensor failure, data transmission errors, and data removal for saving transmission power are the main causes for the missing data. This paper studies the impact of missing data on the measurement of the time-variant frequency response func- tion (TV-FRF) of linear time-variant systems. A nonparametric procedure for estimating the missing data and the TV-FRF is proposed. The theory is illustrated by simulations and experiments.

[1]  J. Schoukens,et al.  Estimation of nonparametric noise and FRF models for multivariable systems—Part II: Extensions, applications , 2010 .

[2]  Billie F. Spencer,et al.  Smart sensing technology: opportunities and challenges , 2004 .

[3]  L. Zadeh,et al.  Frequency Analysis of Variable Networks , 1950, Proceedings of the IRE.

[4]  Rik Pintelon,et al.  Nonparametric Tracking of the Time-Varying Dynamics of Weakly Nonlinear Periodically Time-Varying Systems Using Periodic Inputs , 2012, IEEE Transactions on Instrumentation and Measurement.

[5]  Yves Rolain,et al.  Frequency Response Function Measurements Using Concatenated Subrecords With Arbitrary Length , 2012, IEEE Transactions on Instrumentation and Measurement.

[6]  Russell V. Lenth,et al.  Statistical Analysis With Missing Data (2nd ed.) (Book) , 2004 .

[7]  Gerd Vandersteen,et al.  Frequency Response Function Estimation in the Presence of Missing Output Data , 2015, IEEE Transactions on Instrumentation and Measurement.

[8]  Angelika Fruehauf,et al.  A First Course In Numerical Analysis , 2016 .

[9]  Ivan Markovsky,et al.  Structured Low-Rank Approximation with Missing Data , 2013, SIAM J. Matrix Anal. Appl..

[10]  Rik Pintelon,et al.  Time-Variant Frequency Response Function Measurement of Multivariate Time-Variant Systems Operating in Feedback , 2017, IEEE Transactions on Instrumentation and Measurement.

[11]  J. Schoukens,et al.  Estimation of nonparametric noise and FRF models for multivariable systems—Part I: Theory , 2010 .

[12]  Yongchao Yang,et al.  Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure , 2016 .

[13]  Anders Hansson,et al.  Maximum likelihood estimation of Gaussian models with missing data - Eight equivalent formulations , 2012, Autom..

[14]  Lotfi A. Zadeh,et al.  The Determination of the Impulsive Response of Variable Networks , 1950 .

[15]  Rik Pintelon,et al.  Non-parametric estimate of the system function of a time-varying system , 2012, Autom..

[16]  Boualem Boashash,et al.  Time-Frequency Signal Analysis and Processing: A Comprehensive Reference , 2015 .

[17]  Gerd Vandersteen,et al.  Frequency Response Matrix Estimation From Missing Input–Output Data , 2015, IEEE Transactions on Instrumentation and Measurement.

[18]  Rik Pintelon,et al.  Nonparametric time-variant frequency response function estimates using arbitrary excitations , 2015, Autom..

[19]  Rik Pintelon,et al.  FRF Measurement of Nonlinear Systems Operating in Closed Loop , 2013, IEEE Transactions on Instrumentation and Measurement.

[20]  Wendy Van Moer,et al.  A Simple Nonparametric Preprocessing Technique to Correct for Nonstationary Effects in Measured Data , 2012, IEEE Transactions on Instrumentation and Measurement.

[21]  Anders Hansson,et al.  Maximum likelihood estimation of linear SISO models subject to missing output data and missing input data , 2014, Int. J. Control.

[22]  Rik Pintelon,et al.  Frequency domain system identification with missing data , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[23]  Rik Pintelon,et al.  Realization and identification of autonomous linear periodically time-varying systems , 2014, Autom..

[24]  Alf Isaksson,et al.  Identification of ARX-models subject to missing data , 1993, IEEE Trans. Autom. Control..

[25]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data , 1988 .