Simple Approximate Varieties for Sets of Empirical Points

We present a symbolic-numeric approach for the analysis of a given set of noisy data, represented as a finite set $\X$ of limited precision points. Starting from $\X$ and a permitted tolerance $\varepsilon$ on its coordinates, our method automatically determines a low degree monic polynomial whose associated variety passes close to each point of $\X$ by less than the given tolerance $\varepsilon$.

[1]  Bruno Buchberger,et al.  The Construction of Multivariate Polynomials with Preassigned Zeros , 1982, EUROCAM.

[2]  Gene H. Golub,et al.  Matrix computations , 1983 .

[3]  H. Walker,et al.  Least-change secant update methods for undetermined systems , 1990 .

[4]  C. Pan,et al.  Rank-Revealing QR Factorizations and the Singular Value Decomposition , 1992 .

[5]  J. Demmel,et al.  Improved Error Bounds for Underdetermined System Solvers , 1993, SIAM J. Matrix Anal. Appl..

[6]  B. Datta Numerical Linear Algebra and Applications , 1995 .

[7]  Christian H. Bischof,et al.  Computing rank-revealing QR factorizations of dense matrices , 1998, TOMS.

[8]  Christian H. Bischof,et al.  Algorithm 782: codes for rank-revealing QR factorizations of dense matrices , 1998, TOMS.

[9]  Bernard Mourrain,et al.  A New Criterion for Normal Form Algorithms , 1999, AAECC.

[10]  Stephen M. Watt,et al.  Numerical Implicitization of Parametric Hypersurfaces with Linear Algebra , 2000, AISC.

[11]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[12]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[13]  Hans J. Stetter "Approximate Commutative Algebra": an ill-chosen name for an important discipline , 2006, ACCA.

[14]  Claudia Fassino,et al.  Thinning Out Redundant Empirical Data , 2007, Math. Comput. Sci..

[15]  Tomas Sauer,et al.  Approximate varieties, approximate ideals and dimension reduction , 2007, Numerical Algorithms.

[16]  Claudia Fassino,et al.  Stable border bases for ideals of points , 2008, J. Symb. Comput..

[17]  Sebastian Pokutta,et al.  Approximate computation of zero-dimensional polynomial ideals , 2009, J. Symb. Comput..

[18]  Claudia Fassino,et al.  Almost vanishing polynomials for sets of limited precision points , 2008, J. Symb. Comput..

[19]  Martin Kreuzer,et al.  Subideal border bases , 2011, Math. Comput..