Quantifying Information Flow During Emergencies

[1]  James P. Bagrow,et al.  Natural emergence of clusters and bursts in network evolution , 2012, Physical Review X.

[2]  Petter Holme,et al.  Predictability of population displacement after the 2010 Haiti earthquake , 2012, Proceedings of the National Academy of Sciences.

[3]  S. Havlin,et al.  Communication activity in a social network: relation between long-term correlations and inter-event clustering , 2012, Scientific Reports.

[4]  G. S. van Doorn,et al.  THE EVOLUTION OF GENERALIZED RECIPROCITY ON SOCIAL INTERACTION NETWORKS , 2012, Evolution; international journal of organic evolution.

[5]  Jesús Gómez-Gardeñes,et al.  Reciprocal interactions out of congestion-free adaptive networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Albert-László Barabási,et al.  Universal features of correlated bursty behaviour , 2011, Scientific Reports.

[7]  Marta C. González,et al.  A universal model for mobility and migration patterns , 2011, Nature.

[8]  Dino Pedreschi,et al.  Human mobility, social ties, and link prediction , 2011, KDD.

[9]  Cheng Wang,et al.  Weighted reciprocity in human communication networks , 2011, ArXiv.

[10]  Alessandro Vespignani,et al.  Modeling human mobility responses to the large-scale spreading of infectious diseases , 2011, Scientific reports.

[11]  Kimmo Kaski,et al.  Circadian pattern and burstiness in mobile phone communication , 2011, 1101.0377.

[12]  Chaoming Song,et al.  Modelling the scaling properties of human mobility , 2010, 1010.0436.

[13]  Santo Fortunato,et al.  Characterizing and modeling the dynamics of online popularity , 2010, Physical review letters.

[14]  Albert-László Barabási,et al.  Collective Response of Human Populations to Large-Scale Emergencies , 2011, PloS one.

[15]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[16]  Kimmo Kaski,et al.  Reciprocity of mobile phone calls , 2010, 1002.0763.

[17]  N. Johnson,et al.  Common ecology quantifies human insurgency , 2009, Nature.

[18]  Marta C. González,et al.  Understanding spatial connectivity of individuals with non-uniform population density , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  S. Havlin,et al.  Scaling laws of human interaction activity , 2009, Proceedings of the National Academy of Sciences.

[20]  H. Herrmann,et al.  Agent-based model for friendship in social networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  A. Vespignani Predicting the Behavior of Techno-Social Systems , 2009, Science.

[22]  Alessandro Vespignani,et al.  Multiscale mobility networks and the spatial spreading of infectious diseases , 2009, Proceedings of the National Academy of Sciences.

[23]  Albert-László Barabási,et al.  Understanding the Spreading Patterns of Mobile Phone Viruses , 2009, Science.

[24]  Daniel J. Brass,et al.  Network Analysis in the Social Sciences , 2009, Science.

[25]  Lada A. Adamic,et al.  Computational Social Science , 2009, Science.

[26]  Guido Caldarelli,et al.  Invasion percolation and the time scaling behavior of a queuing model of human dynamics , 2009 .

[27]  Bruno Gonçalves,et al.  Human dynamics revealed through Web analytics , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[29]  C. Rodriguez-Sickert,et al.  The dynamics of a mobile phone network , 2007, 0712.4031.

[30]  G. Madey,et al.  Uncovering individual and collective human dynamics from mobile phone records , 2007, 0710.2939.

[31]  J. Kurths,et al.  Reciprocity of networks with degree correlations and arbitrary degree sequences. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  F. Agneessens,et al.  Reciprocity, Multiplexity, and Exchange: Measures , 2007 .

[33]  Fang Wu,et al.  Novelty and collective attention , 2007, Proceedings of the National Academy of Sciences.

[34]  A. Barabasi,et al.  Burstiness and memory in complex systems , 2006, physics/0610233.

[35]  A-L Barabási,et al.  Structure and tie strengths in mobile communication networks , 2006, Proceedings of the National Academy of Sciences.

[36]  Alessandro Vespignani,et al.  The role of the airline transportation network in the prediction and predictability of global epidemics , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[37]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[38]  A. Barabasi,et al.  Human dynamics: Darwin and Einstein correspondence patterns , 2005, Nature.

[39]  Albert-László Barabási,et al.  Modeling bursts and heavy tails in human dynamics , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Albert-László Barabási,et al.  The origin of bursts and heavy tails in human dynamics , 2005, Nature.

[41]  Carter T. Butts,et al.  Emergent Coordinators in the World Trade Center Disaster , 2005, International Journal of Mass Emergencies & Disasters.

[42]  T. Geisel,et al.  Forecast and control of epidemics in a globalized world. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[44]  D. Garlaschelli,et al.  Patterns of link reciprocity in directed networks. , 2004, Physical review letters.

[45]  Stephanie Forrest,et al.  Email networks and the spread of computer viruses. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Alan Macfarlane,et al.  Social , 1994, Schizophrenia Research.

[47]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.