On alpha-adic expansions in Pisot bases

We study @a-adic expansions of numbers, that is to say, left infinite representations of numbers in the positional numeration system with the base @a, where @a is an algebraic conjugate of a Pisot number @b. Based on a result of Bertrand and Schmidt, we prove that a number belongs to Q(@a) if and only if it has an eventually periodic @a-adic expansion. Then we consider @a-adic expansions of elements of the ring Z[@a^-^1] when @b satisfies the so-called Finiteness property (F). We give two algorithms for computing these expansions - one for positive and one for negative numbers. In the particular case that @b is a quadratic Pisot unit satisfying (F), we inspect the unicity and/or multiplicity of @a-adic expansions of elements of Z[@a^-^1]. We also provide algorithms to generate @a-adic expansions of rational numbers in that case.

[1]  Nikita Sidorov,et al.  Ergodic properties of the Erdös measure, the entropy of the goldenshift, and related problems , 1998 .

[2]  Nikita Sidorov,et al.  Ergodic properties of Erd\"os measure, the entropy of the goldenshift, and related problems , 1996 .

[3]  Christiane Frougny,et al.  Representations of numbers and finite automata , 1992, Mathematical systems theory.

[4]  Christiane Frougny On-Line Odometers for Two-Sided Symbolic Dynamical Systems , 2002, Developments in Language Theory.

[5]  Hui Rao,et al.  A CERTAIN FINITENESS PROPERTY OF PISOT NUMBER SYSTEMS , 2004 .

[6]  Taizo Sadahiro Multiple points of tilings associated with Pisot numeration systems , 2006, Theor. Comput. Sci..

[7]  Robert F. Tichy,et al.  Odometers and systems of numeration , 1995 .

[8]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[9]  Non-Standard Numeration Systems , 2005 .

[10]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[11]  Berndt Farwer,et al.  ω-automata , 2002 .

[12]  P. Ambroz On the tau-adic expansions of real numbers , 2005 .

[13]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[14]  W. Parry On theβ-expansions of real numbers , 1960 .

[15]  Shunji Ito,et al.  Purely Periodic -Expansions with Pisot Unit Base , 2003 .

[16]  Shigeki Akiyama A self-similar tiling generated by the minimal Pisot number , 1998 .

[17]  Christiane Frougny Confluent Linear Numeration Systems , 1992, Theor. Comput. Sci..

[18]  A. Messaoudi,et al.  Frontiere du fractal de Rauzy et systeme de numeration complexe , 2000 .

[19]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[20]  K. Schmidt,et al.  On Periodic Expansions of Pisot Numbers and Salem Numbers , 1980 .

[21]  Boris Solomyak,et al.  Finite beta-expansions , 1992, Ergodic Theory and Dynamical Systems.

[22]  Christiane Frougny,et al.  Linear Numeration Systems of Order Two , 1988, Inf. Comput..

[23]  François Blanchard beta-Expansions and Symbolic Dynamics , 1989, Theor. Comput. Sci..

[24]  Hui Rao,et al.  Purely periodic beta-expansions with Pisot unit base , 2004 .

[25]  S. Akiyama Self affine tiling and Pisot numeration system , 1999 .

[26]  Shigeki Akiyama,et al.  Cubic Pisot units with finite beta expansions , 2004 .

[27]  V. Berthé,et al.  Purely periodic beta-expansions in the Pisot non-unit case , 2004, math/0407282.

[28]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[29]  Klaus Schmidt,et al.  Algebraic Coding of Expansive Group Automorphisms and Two-sided Beta-Shifts , 2000 .