Quantum Isometry Group for Spectral Triples with Real Structure

Given a spectral triple of compact type with a real structure in the sense of (Dabrowski L., J. Geom. Phys. 56 (2006), 86-107) (which is a modification of Connes' original definition to accommodate examples coming from quantum group theory) and refe- rences therein, we prove that there is always a universal object in the category of compact quantum group acting by orientation preserving isometries (in the sense of (Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530-2572)) and also preserving the real structure of the spectral triple. This gives a natural definition of quantum isometry group in the context of real spectral triples without fixing a choice of 'volume form' as in (Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530-2572).

[1]  Debashish Goswami,et al.  Quantum Isometry groups of the Podles Spheres , 2008, 0810.0658.

[2]  Adam G. Skalski,et al.  Quantum Isometry Groups of 0- Dimensional Manifolds , 2008, 0807.4288.

[3]  Debashish Goswami,et al.  Quantum Group of Orientation preserving Riemannian Isometries , 2008, 0806.3687.

[4]  Jyotishman Bhowmick Quantum isometry group of the n-tori , 2008, 0803.4434.

[5]  Debashish Goswami,et al.  Quantum Isometry Groups: Examples and Computations , 2007, 0707.2648.

[6]  Debashish Goswami Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.

[7]  P. Sołtan Quantum families of maps and quantum semigroups on finite quantum spaces , 2006, math/0610922.

[8]  G. Landi,et al.  Dirac operators on all Podles quantum spheres , 2006, math/0606480.

[9]  G. Landi,et al.  The spectral geometry of the equatorial Podles sphere , 2004, math/0408034.

[10]  T. Banica Quantum automorphism groups of homogeneous graphs , 2003, math/0311402.

[11]  K. Schmuedgen,et al.  Dirac operator and a twisted cyclic cocycle on the standard Podles quantum sphere , 2003, math/0305051.

[12]  T. Banica Quantum automorphism groups of small metric spaces , 2003, math/0304025.

[13]  Julien Bichon,et al.  Quantum automorphism groups of finite graphs , 1999, math/9902029.

[14]  Shuzhou Wang Ergodic Actions of Universal Quantum Groups on Operator Algebras , 1998, math/9807093.

[15]  Shuzhou Wang Structure and Isomorphism Classification of Compact Quantum Groups A_u(Q) and B_u(Q) , 1998, math/9807095.

[16]  Shuzhou Wang,et al.  Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.

[17]  Ann Maes,et al.  Notes on Compact Quantum Groups , 1998, math/9803122.

[18]  J. C. Várilly An Introduction to Noncommutative Geometry , 1997, physics/9709045.

[19]  Shuzhou Wang,et al.  Free products of compact quantum groups , 1995 .

[20]  S. Woronowicz,et al.  Compact matrix pseudogroups , 1987 .

[21]  Ludwik Da¸browski Geometry of quantum spheres , 2006 .

[22]  S. Woronowicz Compact quantum groups , 2000 .

[23]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .