The Geometric Mechanics of Undulatory Robotic Locomotion

This paper uses geometric methods to study basic problems in the mechanics and control of locomotion. We consider in detail the case of "undulatory locomotion" in which net motion is generated by coupling internal shape changes with external nonholonomic con straints. Such locomotion problems have a natural geometric inter pretation as a connection on a principal fiber bundle. The properties of connections lead to simplified results for studying both dynamics and issues of controllability for locomotion systems. We demonstrate the utility of this approach using a novel "snakeboard" and a mul tisegmented serpentine robot that is modeled after Hirose's active cord mechanism.

[1]  Tony Owen Machines That Walk: The Adaptive Suspension Vehicle by Shin-Min Song and Kenneth J. Waldron, The MIT Press, Massachusetts 1989, 314 pages incl. index (£35.95) , 1989, Robotica.

[2]  Gregory S. Chirikjian,et al.  The kinematics of hyper-redundant robot locomotion , 1995, IEEE Trans. Robotics Autom..

[3]  Richard M. Murray,et al.  Geometric phases and robotic locomotion , 1995, J. Field Robotics.

[4]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[5]  J. Marsden Lectures on Mechanics , 1992 .

[6]  Christopher I. Byrnes,et al.  On the attitude stabilization of rigid spacecraft , 1991, Autom..

[7]  Alexander F. Vakakis,et al.  An "Interesting" Strange Attractor in the Dynamics of a Hopping Robot , 1991, Int. J. Robotics Res..

[8]  R. Montgomery Isoholonomic problems and some applications , 1990 .

[9]  Yoshihiko Nakamura,et al.  Exploiting nonholonomic redundancy of free-flying space robots , 1993, IEEE Trans. Robotics Autom..

[10]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[11]  Joel W. Burdick,et al.  Periodic Motions of a Hopping Robot With Vertical and Forward Motion , 1993, Int. J. Robotics Res..

[12]  Richard M. Murray,et al.  Non-holonomic control systems: from steering to stabilization with sinusoids , 1995 .

[13]  Kenneth J. Waldron,et al.  Machines That Walk: The Adaptive Suspension Vehicle , 1988 .

[14]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[15]  Shigeo Hirose,et al.  Biologically Inspired Robots: Snake-Like Locomotors and Manipulators , 1993 .

[16]  S. Kajita,et al.  Study of dynamic biped locomotion on rugged terrain-theory and basic experiment , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[17]  F. Wilczek,et al.  Geometry of self-propulsion at low Reynolds number , 1989, Journal of Fluid Mechanics.

[18]  Jerrold E. Marsden,et al.  Foundations of Mechanics: 2nd Edition , 1980 .

[19]  Shigeo Hirose,et al.  Design and Control of a Mobile Robot with an Articulated Body , 1990, Int. J. Robotics Res..

[20]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[21]  R. Murray,et al.  Exponential stabilization of driftless nonlinear control systems using homogeneous feedback , 1997, IEEE Trans. Autom. Control..

[22]  Philippe Martin,et al.  Flatness and motion planning : the car with n trailers. , 1992 .

[23]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[24]  Akihito Sano,et al.  Sensor-Based Control of a Nine-Link Biped , 1990, Int. J. Robotics Res..

[25]  Daniel E. Koditschek,et al.  Analysis of a Simplified Hopping Robot , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[26]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[27]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[28]  J. Ostrowski The mechanics and control of undulatory robotic locomotion , 1995 .

[29]  I. Shimoyama,et al.  Dynamic Walk of a Biped , 1984 .

[30]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[31]  O. J. Sordalen,et al.  Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .

[32]  Dimitrios P. Tsakiris,et al.  Motion Control and Planning for Nonholonomic Kinematic Chains , 1995 .

[33]  Richard M. Murray,et al.  Nonholonomic control systems: from steering to stabilization with sinusoids , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[34]  Joel W. Burdick,et al.  The mechanics of undulatory locomotion: the mixed kinematic and dynamic case , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[35]  R. Stengel,et al.  CONTROL systems. , 1952, Hospitals.

[36]  Joel W. Burdick,et al.  Nonholonomic mechanics and locomotion: the snakeboard example , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[37]  S. Shankar Sastry,et al.  On reorienting linked rigid bodies using internal motions , 1995, IEEE Trans. Robotics Autom..

[38]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[39]  J. Burdick,et al.  Controllability Tests for Mechanical Systems withSymmetries and ConstraintsJim , 1997 .

[40]  Gregory S. Chirikjian,et al.  A 'sidewinding' locomotion gait for hyper-redundant robots , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[41]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[42]  S. Hirose,et al.  Titan III, A quadruped walking vehicle , 1985 .

[43]  P. Krishnaprasad,et al.  G-snakes: nonholonomic kinematic chains on Lie groups , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[44]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[45]  Yoji Umetani,et al.  Kinematic Control of Active Cord Mechanism with Tactile Sensors , 1976 .

[46]  Michael Brady,et al.  Sensor-based control of AGVs , 1990 .