Development of constant-pH simulation methods in implicit solvent and applications in biomolecular systems

[1]  K. Gubbins,et al.  Computationally Mapping pKa Shifts Due to the Presence of a Polyelectrolyte Chain around Whey Proteins. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[2]  R. Distasio,et al.  eQE: An open‐source density functional embedding theory code for the condensed phase , 2017 .

[3]  P. Derreumaux,et al.  Protein-RNA complexation driven by the charge regulation mechanism. , 2017, Biochemical and biophysical research communications.

[4]  Timothy O. Street,et al.  Molecular mechanism of bacterial Hsp90 pH‐dependent ATPase activity , 2017, Protein science : a publication of the Protein Society.

[5]  M. Skepö,et al.  Adsorption of polyelectrolyte-like proteins to silica surfaces and the impact of pH on the response to ionic strength. A Monte Carlo simulation and ellipsometry study. , 2017, Journal of colloid and interface science.

[6]  F. L. Barroso da Silva,et al.  Benchmarking a Fast Proton Titration Scheme in Implicit Solvent for Biomolecular Simulations. , 2017, Journal of chemical theory and computation.

[7]  A. Salis,et al.  Protein‐ion Interactions: Simulations of Bovine Serum Albumin in Physiological Solutions of NaCl, KCl and LiCl , 2017 .

[8]  António M. Baptista,et al.  Effect of a pH Gradient on the Protonation States of Cytochrome c Oxidase: A Continuum Electrostatics Study , 2017, J. Chem. Inf. Model..

[9]  P. Derreumaux,et al.  Fast coarse-grained model for RNA titration. , 2017, The Journal of chemical physics.

[10]  H. Grubmüller,et al.  Accurate Three States Model for Amino Acids with Two Chemically Coupled Titrating Sites in Explicit Solvent Atomistic Constant pH Simulations and pK(a) Calculations. , 2017, Journal of chemical theory and computation.

[11]  Haibo Yu,et al.  Rationalising pKa shifts in Bacillus circulans xylanase with computational studies. , 2016, Physical chemistry chemical physics : PCCP.

[12]  Benoît Roux,et al.  Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations. , 2016, The Journal of chemical physics.

[13]  DeCarlos E. Taylor,et al.  Blind test of density-functional-based methods on intermolecular interaction energies. , 2016, The Journal of chemical physics.

[14]  Jana K. Shen,et al.  Conformational Activation of a Transmembrane Proton Channel from Constant pH Molecular Dynamics. , 2016, The journal of physical chemistry letters.

[15]  I. Ciofini,et al.  Nonempirical Double-Hybrid Functionals: An Effective Tool for Chemists. , 2016, Accounts of chemical research.

[16]  P. Pascutti,et al.  Unraveling HIV protease flaps dynamics by Constant pH Molecular Dynamics simulations. , 2016, Journal of structural biology.

[17]  P. Derreumaux,et al.  Electrostatics analysis of the mutational and pH effects of the N-terminal domain self-association of the major ampullate spidroin. , 2016, Soft matter.

[18]  Joost VandeVondele,et al.  Combining Linear-Scaling DFT with Subsystem DFT in Born-Oppenheimer and Ehrenfest Molecular Dynamics Simulations: From Molecules to a Virus in Solution. , 2016, Journal of chemical theory and computation.

[19]  I. André,et al.  A De Novo Designed Coiled-Coil Peptide with a Reversible pH-Induced Oligomerization Switch. , 2016, Structure.

[20]  C. Soares,et al.  Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations. , 2016, Biochimica et biophysica acta.

[21]  Emanuele Rossini,et al.  Proton solvation in protic and aprotic solvents , 2016, J. Comput. Chem..

[22]  Mikael Lund,et al.  Adsorption of the intrinsically disordered saliva protein histatin 5 to silica surfaces. A Monte Carlo simulation and ellipsometry study. , 2016, Journal of colloid and interface science.

[23]  F. Silva,et al.  On the complexation of whey proteins , 2016 .

[24]  H. Sticht,et al.  Mimicking titration experiments with MD simulations: A protocol for the investigation of pH-dependent effects on proteins , 2016, Scientific Reports.

[25]  E. Foegeding,et al.  Designing Whey Protein-Polysaccharide Particles for Colloidal Stability. , 2016, Annual review of food science and technology.

[26]  H. Grubmüller,et al.  Charge-Neutral Constant pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer. , 2016, Journal of chemical theory and computation.

[27]  Junming Ho,et al.  Calculating Free Energy Changes in Continuum Solvation Models. , 2016, The journal of physical chemistry. B.

[28]  M. Barbosa,et al.  Thermodynamic and dynamic anomalous behavior in the TIP4P/ε water model , 2016 .

[29]  M. O. Kim,et al.  Computation of pH‐dependent binding free energies , 2016, Biopolymers.

[30]  Lin Li,et al.  pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa , 2015, Proteins.

[31]  V. Teixeira,et al.  Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers. , 2015, Journal of chemical theory and computation.

[32]  Ernst-Walter Knapp,et al.  pKA in proteins solving the Poisson–Boltzmann equation with finite elements , 2015, J. Comput. Chem..

[33]  Lin Wang,et al.  DelPhiPKa web server: predicting pKa of proteins, RNAs and DNAs , 2015, Bioinform..

[34]  S. Vasudevan,et al.  Ab Initio Molecular Dynamics Simulations of Amino Acids in Aqueous Solutions: Estimating pKa Values from Metadynamics Sampling. , 2015, The journal of physical chemistry. B.

[35]  Bernard R Brooks,et al.  Computational scheme for pH‐dependent binding free energy calculation with explicit solvent , 2015, Protein science : a publication of the Protein Society.

[36]  R. Sigel,et al.  Protonation-Dependent Base Flipping at Neutral pH in the Catalytic Triad of a Self-Splicing Bacterial Group II Intron. , 2015, Angewandte Chemie.

[37]  S. Stoll,et al.  Modelling the interaction processes between nanoparticles and biomacromolecules of variable hydrophobicity: Monte Carlo simulations , 2015 .

[38]  B. Roux,et al.  Constant-pH Hybrid Nonequilibrium Molecular Dynamics–Monte Carlo Simulation Method , 2015, Journal of chemical theory and computation.

[39]  Bernard R Brooks,et al.  Enhancing constant-pH simulation in explicit solvent with a two-dimensional replica exchange method. , 2015, Journal of chemical theory and computation.

[40]  Mikael Lund,et al.  Dimerization of Terminal Domains in Spiders Silk Proteins Is Controlled by Electrostatic Anisotropy and Modulated by Hydrophobic Patches. , 2015, ACS biomaterials science & engineering.

[41]  S. Hurtley New players in Lou Gehrig's disease , 2015, Science Signaling.

[42]  S. Hurtley Making a molecular motor fit for purpose , 2015 .

[43]  J. Donoso,et al.  Theoretical pKa calculations with continuum model solvents, alternative protocols to thermodynamic cycles , 2014 .

[44]  Arieh Warshel,et al.  Multiscale modeling of biological functions: from enzymes to molecular machines (Nobel Lecture). , 2014, Angewandte Chemie.

[45]  Jana K. Shen,et al.  Predicting proton titration in cationic micelle and bilayer environments. , 2014, The Journal of chemical physics.

[46]  Wei Chen,et al.  Recent development and application of constant pH molecular dynamics , 2014, Molecular simulation.

[47]  J. Jacquier,et al.  Cold-set whey protein microgels as pH modulated immobilisation matrices for charged bioactives. , 2014, Food chemistry.

[48]  S. Stoll Computer Simulations of Soft Nanoparticles and Their Interactions with DNA-Like Polyelectrolytes , 2014 .

[49]  C. Persson,et al.  Effect of charge regulation and ion-dipole interactions on the selectivity of protein-nanoparticle binding. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[50]  Jason M. Swails,et al.  Constant pH Replica Exchange Molecular Dynamics in Explicit Solvent Using Discrete Protonation States: Implementation, Testing, and Validation , 2014, Journal of chemical theory and computation.

[51]  Damien Farrell,et al.  Protein dielectric constants determined from NMR chemical shift perturbations. , 2013, Journal of the American Chemical Society.

[52]  Shin-Ho Chung,et al.  Molecular dynamics simulations of scorpion toxin recognition by the Ca(2+)-activated potassium channel KCa3.1. , 2013, Biophysical journal.

[53]  T. Simonson What Is the Dielectric Constant of a Protein When Its Backbone Is Fixed? , 2013, Journal of chemical theory and computation.

[54]  W G Noid,et al.  Perspective: Coarse-grained models for biomolecular systems. , 2013, The Journal of chemical physics.

[55]  Wei Chen,et al.  Introducing titratable water to all-atom molecular dynamics at constant pH. , 2013, Biophysical journal.

[56]  Mikael Lund,et al.  Charge regulation in biomolecular solution , 2013, Quarterly Reviews of Biophysics.

[57]  Matthew P Jacobson,et al.  Considering protonation as a posttranslational modification regulating protein structure and function. , 2013, Annual review of biophysics.

[58]  D. Tieleman,et al.  Constant pH simulations with the coarse-grained MARTINI model—Application to oleic acid aggregates. , 2013 .

[59]  Jennifer L. Knight,et al.  Towards Accurate Prediction of Protonation Equilibrium of Nucleic Acids. , 2013, The journal of physical chemistry letters.

[60]  P. Biswas,et al.  Capturing molten globule state of α-lactalbumin through constant pH molecular dynamics simulations. , 2013, The Journal of chemical physics.

[61]  Jennifer L. Knight,et al.  pH-dependent dynamics of complex RNA macromolecules. , 2013, Journal of chemical theory and computation.

[62]  Alexander D. MacKerell,et al.  Six-site polarizable model of water based on the classical Drude oscillator. , 2013, The Journal of chemical physics.

[63]  Luigi Delle Site,et al.  A pH-dependent coarse-grained model for peptides , 2012, 1212.4312.

[64]  B. Ninham,et al.  Hofmeister challenges: ion binding and charge of the BSA protein as explicit examples. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[65]  S. Parasuraman,et al.  Protein data bank , 2012, Journal of pharmacology & pharmacotherapeutics.

[66]  A. Roitberg,et al.  pH-replica exchange molecular dynamics in proteins using a discrete protonation method. , 2012, The journal of physical chemistry. B.

[67]  A. Baptista,et al.  Reversibility of prion misfolding: insights from constant-pH molecular dynamics simulations. , 2012, The journal of physical chemistry. B.

[68]  Chuan Li,et al.  DelPhi web server v2: incorporating atomic-style geometrical figures into the computational protocol , 2012, Bioinform..

[69]  Ramu Anandakrishnan,et al.  H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations , 2012, Nucleic Acids Res..

[70]  Ken A Dill,et al.  Simple liquid models with corrected dielectric constants. , 2012, The journal of physical chemistry. B.

[71]  Jana K. Shen,et al.  Unraveling A Trap-and-Trigger Mechanism in the pH-Sensitive Self-Assembly of Spider Silk Proteins. , 2012, The journal of physical chemistry letters.

[72]  Mikael Lund,et al.  Anisotropic Interactions in Protein Mixtures: Self Assembly and Phase Behavior in Aqueous Solution. , 2012, The journal of physical chemistry letters.

[73]  Spencer R Pruitt,et al.  Fragmentation methods: a route to accurate calculations on large systems. , 2012, Chemical reviews.

[74]  Ali Hassanali,et al.  On the recombination of hydronium and hydroxide ions in water , 2011, Proceedings of the National Academy of Sciences.

[75]  Sarah L. Williams,et al.  Progress in the prediction of pKa values in proteins , 2011, Proteins.

[76]  Nathan A. Baker,et al.  On the development of protein pKa calculation algorithms , 2011, Proteins.

[77]  A. Baptista,et al.  Is the prediction of pKa values by constant‐pH molecular dynamics being hindered by inherited problems? , 2011, Proteins.

[78]  Steven K. Burger,et al.  A parameterized, continuum electrostatic model for predicting protein pKa values , 2011, Proteins.

[79]  Jana K. Shen,et al.  Continuous Constant pH Molecular Dynamics in Explicit Solvent with pH-Based Replica Exchange. , 2011, Journal of chemical theory and computation.

[80]  V. Rotello,et al.  Electrostatic selectivity in protein-nanoparticle interactions. , 2011, Biomacromolecules.

[81]  H. Grubmüller,et al.  Constant pH Molecular Dynamics in Explicit Solvent with λ-Dynamics , 2011, Journal of chemical theory and computation.

[82]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[83]  T. Becker,et al.  Protein changes during malting and brewing with focus on haze and foam formation: a review , 2011 .

[84]  Tulio Marcus Ribeiro Calixto Análises de propriedades eletrostáticas e estruturais de complexos de proteínas para o desenvolvimento de preditores de complexação em larga escala , 2010 .

[85]  Mikael Lund,et al.  Fast Proton Titration Scheme for Multiscale Modeling of Protein Solutions. , 2010, Journal of chemical theory and computation.

[86]  Mikael Lund,et al.  Molecular evidence of stereo-specific lactoferrin dimers in solution. , 2010, Biophysical chemistry.

[87]  A. Baptista,et al.  Constant-pH molecular dynamics simulations reveal a β-rich form of the human prion protein. , 2010, The journal of physical chemistry. B.

[88]  César Augusto F. de Oliveira,et al.  Coupling Constant pH Molecular Dynamics with Accelerated Molecular Dynamics , 2010, Journal of chemical theory and computation.

[89]  Kenneth M Merz,et al.  Divide-and-Conquer Hartree-Fock Calculations on Proteins. , 2010, Journal of chemical theory and computation.

[90]  Arieh Warshel,et al.  Effective approach for calculations of absolute stability of proteins using focused dielectric constants , 2009, Proteins.

[91]  Bo Jönsson,et al.  Polyelectrolyte-protein complexation driven by charge regulation , 2009 .

[92]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[93]  Dominik Horinek,et al.  Rational design of ion force fields based on thermodynamic solvation properties. , 2009, The Journal of chemical physics.

[94]  Arieh Warshel,et al.  Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pKa, redox reactions and solvation free energies. , 2009, The journal of physical chemistry. B.

[95]  吕一旭 Yixu Lu 引言 (Introduction) , 2009, Provincial China.

[96]  M. Coote,et al.  pKa Calculation of Some Biologically Important Carbon Acids - An Assessment of Contemporary Theoretical Procedures. , 2009, Journal of chemical theory and computation.

[97]  J. Warwicker,et al.  Simplified methods for pKa and acid pH‐dependent stability estimation in proteins: Removing dielectric and counterion boundaries , 2008, Protein science : a publication of the Protein Society.

[98]  M. O. Fenley,et al.  Protein-ion binding process on finite macromolecular concentration. A Poisson-Boltzmann and Monte Carlo study. , 2008, The journal of physical chemistry. B.

[99]  K. Houk,et al.  Benchmarking pKa Prediction Methods for Residues in Proteins. , 2008, Journal of chemical theory and computation.

[100]  Charles L Brooks,et al.  Recent advances in implicit solvent-based methods for biomolecular simulations. , 2008, Current opinion in structural biology.

[101]  D. Svergun,et al.  Absence of equilibrium cluster phase in concentrated lysozyme solutions , 2008, Proceedings of the National Academy of Sciences.

[102]  Yun He,et al.  A statistical approach to the prediction of pKa values in proteins , 2007, Proteins.

[103]  S. Garofalini,et al.  Dissociative water potential for molecular dynamics simulations. , 2007, The journal of physical chemistry. B.

[104]  S. Sagan,et al.  Effects of pH and salt concentration on the siRNA binding activity of the RNA silencing suppressor protein p19 , 2007, FEBS letters.

[105]  H. Stern Molecular simulation with variable protonation states at constant pH. , 2007, The Journal of chemical physics.

[106]  T. Straatsma,et al.  Dynamic protonation equilibrium of solvated acetic acid. , 2007, Angewandte Chemie.

[107]  A. Baptista,et al.  The pH-dependent conformational states of kyotorphin: a constant-pH molecular dynamics study. , 2007, Biophysical journal.

[108]  Emil Alexov,et al.  Calculation of pKas in RNA: on the structural origins and functional roles of protonated nucleotides. , 2007, Journal of molecular biology.

[109]  Mikael Lund,et al.  Electrostatics in macromolecular solutions , 2007 .

[110]  J. Andrew McCammon,et al.  Biological Applications of Electrostatic Calculations and Brownian Dynamics Simulations , 2007 .

[111]  G. Vriend,et al.  Fast empirical pKa prediction by Ewald summation. , 2006, Journal of molecular graphics & modelling.

[112]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[113]  Arieh Warshel,et al.  Modeling electrostatic effects in proteins. , 2006, Biochimica et biophysica acta.

[114]  B. Hess,et al.  Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models. , 2006, The journal of physical chemistry. B.

[115]  Bo Jönsson,et al.  A New Monte Carlo Method for the Titration of Molecules and Minerals , 2006, PARA.

[116]  F. D. da Silva,et al.  Monte Carlo and modified Tanford-Kirkwood results for macromolecular electrostatics calculations. , 2006, The journal of physical chemistry. B.

[117]  C. Pace,et al.  pK values of the ionizable groups of proteins , 2006, Protein science : a publication of the Protein Society.

[118]  M. Kinoshita,et al.  On the physics of pressure denaturation of proteins , 2006 .

[119]  Mikael Lund,et al.  On the complexation of proteins and polyelectrolytes. , 2006, The journal of physical chemistry. B.

[120]  R. Deshaies,et al.  Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels , 2006, BMC Biochemistry.

[121]  Jan H. Jensen,et al.  Very fast empirical prediction and rationalization of protein pKa values , 2005, Proteins.

[122]  L. G. Dias,et al.  Predicting hydration free energies of neutral compounds by a parametrization of the polarizable continuum model. , 2005, The journal of physical chemistry. A.

[123]  C. Brooks,et al.  Constant pH molecular dynamics with proton tautomerism. , 2005, Biophysical journal.

[124]  T. Simonson,et al.  Proton binding to proteins: a free-energy component analysis using a dielectric continuum model. , 2005, Biophysical journal.

[125]  John Mongan,et al.  Biomolecular simulations at constant pH. , 2005, Current opinion in structural biology.

[126]  Mikael Lund,et al.  On the charge regulation of proteins. , 2005, Biochemistry.

[127]  S. Linse,et al.  Binding of charged ligands to macromolecules. Anomalous salt dependence. , 2005, The journal of physical chemistry. B.

[128]  D. Case,et al.  Constant pH molecular dynamics in generalized Born implicit solvent , 2004, J. Comput. Chem..

[129]  C. Brooks,et al.  Constant‐pH molecular dynamics using continuous titration coordinates , 2004, Proteins.

[130]  Sara Linse,et al.  The role of electrostatic interactions in calmodulin-peptide complex formation. , 2004, Biophysical journal.

[131]  Fredrik Carlsson,et al.  Lysozyme adsorption to charged surfaces : A Monte Carlo Study , 2004 .

[132]  E. Jakobsson,et al.  Ionization states of residues in OmpF and mutants: effects of dielectric constant and interactions between residues. , 2004, Biophysical journal.

[133]  L. Malinina,et al.  Recognition of small interfering RNA by a viral suppressor of RNA silencing , 2003, Nature.

[134]  Mikael Lund,et al.  A mesoscopic model for protein-protein interactions in solution. , 2003, Biophysical journal.

[135]  B. L. de Groot,et al.  The mechanism of proton exclusion in the aquaporin-1 water channel. , 2003, Journal of molecular biology.

[136]  K. Capelle A bird's-eye view of density-functional theory , 2002, cond-mat/0211443.

[137]  Bertrand Guillot,et al.  A reappraisal of what we have learnt during three decades of computer simulations on water , 2002 .

[138]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[139]  C. Soares,et al.  Constant-pH molecular dynamics using stochastic titration , 2002 .

[140]  A. Baptista Comment on “Explicit-solvent molecular dynamics simulation at constant pH: Methodology and application to small amines” [J. Chem. Phys. 114, 9706 (2001)] , 2002 .

[141]  B. Jönsson,et al.  Titration of fatty acids solubilized in cationic, nonionic, and anionic micelles. Theory and experiment , 2002 .

[142]  Jan H. Jensen,et al.  The Prediction of Protein pKa's Using QM/MM: The pKa of Lysine 55 in Turkey Ovomucoid Third Domain , 2002 .

[143]  T. Harris,et al.  Structural Basis of Perturbed pKa Values of Catalytic Groups in Enzyme Active Sites , 2002, IUBMB life.

[144]  Fredrik Carlsson,et al.  Monte Carlo Simulations of Lysozyme Self-Association in Aqueous Solution , 2001 .

[145]  S. Linse,et al.  Focusing of the electrostatic potential at EF‐hands of calbindin D9k: Titration of acidic residues , 2001, Proteins.

[146]  Volkhard Helms,et al.  Molecular dynamics simulation of proton transport with quantum mechanically derived proton hopping rates (Q-HOP MD) , 2001 .

[147]  A. Warshel,et al.  What are the dielectric “constants” of proteins and how to validate electrostatic models? , 2001, Proteins.

[148]  M. Malmsten,et al.  Monte Carlo simulations of polyelectrolyte-protein complexation , 2001 .

[149]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[150]  F. L. D. da Silva,et al.  A critical investigation of the Tanford‐Kirkwood shceme by means of Monte Carlo simulations , 2001, Protein science : a publication of the Protein Society.

[151]  P. Hünenberger,et al.  Explicit-solvent molecular dynamics simulation at constant pH: Methodology and application to small amines , 2001 .

[152]  L. Degrève,et al.  Detailed microscopic study of 1 M aqueous NaCl solution by computer simulations , 2000 .

[153]  R. Norel,et al.  Electrostatic aspects of protein-protein interactions. , 2000, Current opinion in structural biology.

[154]  C. Lim,et al.  Metal Binding in Proteins: The Effect of the Dielectric Medium , 2000 .

[155]  Michiel Sprik,et al.  New generalized gradient approximation functionals , 2000 .

[156]  P. Linse,et al.  Electrostatic attraction and phase separation in solutions of like-charged colloidal particles , 1999 .

[157]  S. Linse,et al.  Ionization Behavior of Acidic Residues in Calbindin D9k , 1999, Proteins.

[158]  P. Harbury,et al.  Tanford-Kirkwood electrostatics for protein modeling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[159]  L. Degrève,et al.  LARGE IONIC CLUSTERS IN CONCENTRATED AQUEOUS NACL SOLUTION , 1999 .

[160]  L. Degrève,et al.  Structure of concentrated aqueous NaCl solution: A Monte Carlo study , 1999 .

[161]  J. Mccammon,et al.  Ewald artifacts in computer simulations of ionic solvation and ion–ion interaction: A continuum electrostatics study , 1999 .

[162]  J. Warwicker,et al.  Electrostatic Models for Calcium Binding Proteins , 1998 .

[163]  M K Gilson,et al.  Theoretical and experimental analysis of ionization equilibria in ovomucoid third domain. , 1998, Biochemistry.

[164]  A. Warshel,et al.  Electrostatic effects in macromolecules: fundamental concepts and practical modeling. , 1998, Current opinion in structural biology.

[165]  O. Steinhauser,et al.  Calculation of the dielectric properties of a protein and its solvent: theory and a case study. , 1997, Journal of molecular biology.

[166]  Arieh Warshel,et al.  Langevin Dipoles Model for ab Initio Calculations of Chemical Processes in Solution: Parametrization and Application to Hydration Free Energies of Neutral and Ionic Solutes and Conformational Analysis in Aqueous Solution , 1997 .

[167]  Arieh Warshel,et al.  Consistent Calculations of pKa's of Ionizable Residues in Proteins: Semi-microscopic and Microscopic Approaches , 1997 .

[168]  E. Alexov,et al.  Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. , 1997, Biophysical journal.

[169]  S. Petersen,et al.  Simulation of protein conformational freedom as a function of pH: constant‐pH molecular dynamics using implicit titration , 1997, Proteins.

[170]  Rebecca C. Wade,et al.  Improving the Continuum Dielectric Approach to Calculating pKas of Ionizable Groups in Proteins , 1996 .

[171]  Aatto Laaksonen,et al.  Concentration Effects in Aqueous NaCl Solutions. A Molecular Dynamics Simulation , 1996 .

[172]  Charles L. Brooks,et al.  CHARGE SCREENING AND THE DIELECTRIC CONSTANT OF PROTEINS : INSIGHTS FROM MOLECULAR DYNAMICS , 1996 .

[173]  Charles L. Brooks,et al.  λ‐dynamics: A new approach to free energy calculations , 1996 .

[174]  S. Linse,et al.  Measurement and modelling of sequence-specific pKa values of lysine residues in calbindin D9k. , 1996, Journal of molecular biology.

[175]  M. Gilson,et al.  The determinants of pKas in proteins. , 1996, Biochemistry.

[176]  Tony J. You,et al.  Conformation and hydrogen ion titration of proteins: a continuum electrostatic model with conformational flexibility. , 1995, Biophysical journal.

[177]  L. R. Scott,et al.  Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian dynamics program , 1995 .

[178]  Thomas Simonson,et al.  Microscopic Dielectric Properties of Cytochrome c from Molecular Dynamics Simulations in Aqueous Solution , 1995 .

[179]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[180]  W. Chazin,et al.  The effect of protein concentration on ion binding. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[181]  A. D. Robertson,et al.  pH, ionic strength, and temperature dependences of ionization equilibria for the carboxyl groups in turkey ovomucoid third domain. , 1995, Biochemistry.

[182]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[183]  A. Klamt Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena , 1995 .

[184]  R. Kjellander,et al.  Electric double-layer properties calculated in the anisotropic reference hypernetted chain approximation , 1994 .

[185]  A. Pardi,et al.  In situ Probing of Adenine Protonation in RNA by 13C NMR , 1994 .

[186]  M. Gilson,et al.  Prediction of pH-dependent properties of proteins. , 1994, Journal of molecular biology.

[187]  C Redfield,et al.  Measurement of the individual pKa values of acidic residues of hen and turkey lysozymes by two-dimensional 1H NMR. , 1994, Biophysical journal.

[188]  K. Schmitz Macro-ion Characterization: From Dilute Solutions to Complex Fluids , 1993 .

[189]  L. Degrève,et al.  Monte Carlo simulation for a symmetrical electrolyte next to a charged spherical colloid particle , 1993 .

[190]  Michael Holst,et al.  Multilevel Methods for the Poisson-Boltzmann Equation , 1993 .

[191]  H. Berendsen,et al.  The electric potential of a macromolecule in a solvent: A fundamental approach , 1991 .

[192]  L. B. Bhuiyan,et al.  A modified Poisson-Boltzmann analysis of the electric double layer around an isolated spherical macroion , 1991 .

[193]  Arieh Warshel,et al.  Microscopic simulations of macroscopic dielectric constants of solvated proteins , 1991 .

[194]  C. Woodward,et al.  Potentials of mean force in charged systems : application to superoxide dismutase , 1991 .

[195]  P. Beroza,et al.  Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[196]  B. Jönsson,et al.  Efficiency in statistical mechanical simulations of biomolecules — computer programs for molecular and continuum modelling , 1991 .

[197]  H. Berendsen,et al.  Computer Simulation of Molecular Dynamics: Methodology, Applications, and Perspectives in Chemistry , 1990 .

[198]  M. Karplus,et al.  pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. , 1990, Biochemistry.

[199]  B. Jönsson,et al.  Electrostatic contributions to the binding of Ca2+ in calbindin mutants. A Monte Carlo study. , 1990, Biophysical chemistry.

[200]  Barry Honig,et al.  Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation , 1990 .

[201]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[202]  K. Dill,et al.  Charge effects on folded and unfolded proteins. , 1990, Biochemistry.

[203]  E. Díaz‐Herrera,et al.  A comparison of numerical methods for solving nonlinear integral equations found in liquid theories , 1989 .

[204]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[205]  M. Lozada-Cassou,et al.  The spherical double layer: a hypernetted chain mean spherical approximation calculation for a model spherical colloid particle , 1989 .

[206]  J. Mccammon,et al.  Ionic strength dependence of enzyme-substrate interactions: Monte Carlo and Poisson-Boltzmann results for superoxide dismutase , 1988 .

[207]  M. Karplus,et al.  Electrostatic effects of charge perturbations introduced by metal oxidation in proteins. A theoretical analysis. , 1988, Journal of molecular biology.

[208]  C. Woodward,et al.  Widom's method for uniform and non-uniform electrolyte solutions , 1988 .

[209]  B Honig,et al.  Computer simulations of the diffusion of a substrate to an active site of an enzyme. , 1987, Science.

[210]  A. Warshel,et al.  Macroscopic models for studies of electrostatic interactions in proteins: limitations and applicability. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[211]  P. Linse,et al.  A Monte Carlo study of the electrostatic interaction between highly charged aggregates. A test of the cell model applied to micellar systems , 1983 .

[212]  J. Warwicker,et al.  Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. , 1982, Journal of molecular biology.

[213]  Harold L. Friedman,et al.  Electrolyte Solutions at Equilibrium , 1981 .

[214]  A. Warshel Calculations of enzymatic reactions: calculations of pKa, proton transfer reactions, and general acid catalysis reactions in enzymes. , 1981, Biochemistry.

[215]  J. Mccammon,et al.  Simulation methods for protein structure fluctuations , 1980, Biopolymers.

[216]  M. Karplus,et al.  Protein structural fluctuations during a period of 100 ps , 1979, Nature.

[217]  William H. Orttung,et al.  DIRECT SOLUTION OF THE POISSON EQUATION FOR BIOMOLECULES OF ARBITRARY SHAPE, POLARIZABILITY DENSITY, AND CHARGE DISTRIBUTION , 1977 .

[218]  P. Fromherz,et al.  Lipoid pH indicators as probes of electrical potential and polarity in micelles , 1977 .

[219]  M. Karplus,et al.  Dynamics of folded proteins , 1977, Nature.

[220]  Chung-Yuan Mou,et al.  The structure of the liquid–vapor interface , 1976 .

[221]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[222]  D. D. Yue,et al.  Theory of Electric Polarization , 1974 .

[223]  C. Tanford,et al.  Interpretation of protein titration curves. Application to lysozyme. , 1972, Biochemistry.

[224]  C. Tanford,et al.  Hydrogen ion titration curve of lysozyme in 6 M guanidine hydrochloride. , 1971, Biochemistry.

[225]  M. Levitt,et al.  Refinement of protein conformations using a macromolecular energy minimization procedure. , 1969, Journal of molecular biology.

[226]  H. Erbring,et al.  Introduction to Colloid and Surface Chemistry , 1967 .

[227]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[228]  D. Piper,et al.  pH stability and activity curves of pepsin with special reference to their clinical importance. , 1965, Gut.

[229]  P. Mukerjee,et al.  A Study of the Surface pH of Micelles Using Solubilized Indicator Dyes , 1964 .

[230]  J. Butler The Proton in Chemistry , 1961, Nature.

[231]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[232]  C. Tanford,et al.  Theory of Protein Titration Curves. I. General Equations for Impenetrable Spheres , 1957 .

[233]  Charles Tanford,et al.  The Location of Electrostatic Charges in Kirkwood's Model of Organic Ions , 1957 .

[234]  Charles Tanford,et al.  Theory of Protein Titration Curves. II. Calculations for Simple Models at Low Ionic Strength , 1957 .

[235]  T. L. Hill,et al.  Influence of Electrolyte on effective Dielectric constants in Enzymes, proteins and other molecules , 1956 .

[236]  T. L. Hill Approximate calculation of the electrostatic free energy of nucleic acids and other cylindrical macromolecules. , 1955, Archives of biochemistry and biophysics.

[237]  E. Verwey,et al.  Theory of the stability of lyophobic colloids. , 1955, The Journal of physical and colloid chemistry.

[238]  J. Kirkwood,et al.  Forces between Protein Molecules in Solution Arising from Fluctuations in Proton Charge and Configuration. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[239]  J. Kirkwood,et al.  The Electrostatic Influence of Substituents on the Dissociation Constants of Organic Acids. II , 1938 .

[240]  J. Kirkwood Solutions Containing Zwitterions: Erratum , 1934 .

[241]  J. Kirkwood,et al.  Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions , 1934 .

[242]  A. D.,et al.  Colloidal Dispersions , 2019, Coulson and Richardson's Chemical Engineering.

[243]  Peter Maurer,et al.  Introduction to Statistical Thermodynamics , 1960 .

[244]  P. Bevilacqua,et al.  Experimental approaches for measuring pKa's in RNA and DNA. , 2014, Methods in enzymology.

[245]  Andrei S. Dukhin,et al.  Fundamentals of Interface and Colloid Science , 2010 .

[246]  Jana K. Shen,et al.  Predicting pKa values with continuous constant pH molecular dynamics. , 2009, Methods in enzymology.

[247]  M. Coote,et al.  A universal approach for continuum solvent pKa calculations: are we there yet? , 2009 .

[248]  L. G. Dias,et al.  A computational study of substituted flavylium salts and their quinonoidal conjugate-bases: S0 -> S1 electronic transition, absolute pKa and reduction potential calculations by DFT and semiempirical methods , 2007 .

[249]  Veronika Kralj-Iglič,et al.  Electrical Double Layer , 2007 .

[250]  BMC Biochemistry BioMed Central Research article Benchmarking pK a prediction , 2006 .

[251]  M. Lewis,et al.  Essays in Brewing Science , 2006 .

[252]  Ying Wei,et al.  Prediction of active sites for protein structures from computed chemical properties , 2005, ISMB.

[253]  K N Houk,et al.  Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules. , 2005, Journal of chemical theory and computation.

[254]  C. Soares,et al.  Some theoretical and computational aspects of the inclusion of proton isomerism in the protonation equilibrium of proteins , 2001 .

[255]  M. Borkovec,et al.  Ionization Processes and Proton Binding in Polyprotic Systems: Small Molecules, Proteins, Interfaces, and Polyelectrolytes , 2001 .

[256]  Da Silva,et al.  Statistical Mechanical Studies of Aqueous solutions and Biomolecular Systems , 1999 .

[257]  A. H. Juffer Theoretical calculations of acid-dissociation constants of proteins. , 1998, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[258]  大島 広行,et al.  Electrical phenomena at interfaces : fundamentals, measurements, and applications , 1998 .

[259]  B. García-Moreno,et al.  Probing structural and physical basis of protein energetics linked to protons and salt. , 1995, Methods in enzymology.

[260]  A. R. H. Goodwin,et al.  A Database for the Static Dielectric Constant of Water and Steam , 1995 .

[261]  D. Bashford,et al.  Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. , 1992, Journal of molecular biology.

[262]  A. Warshel,et al.  Electrostatic energy and macromolecular function. , 1991, Annual review of biophysics and biophysical chemistry.

[263]  S. Harvey Treatment of electrostatic effects in macromolecular modeling , 1989, Proteins.

[264]  C. Brooks Computer simulation of liquids , 1989 .

[265]  D. A. Saville,et al.  Colloidal Dispersions: ACKNOWLEDGEMENTS , 1989 .

[266]  D. Lévesque,et al.  Simulation of Classical Fluids , 1986 .

[267]  J. B. Matthew Electrostatic effects in proteins. , 1985, Annual review of biophysics and biophysical chemistry.

[268]  T. Creighton Proteins: Structures and molecular principles , 1983 .

[269]  D. Chan,et al.  Electrical double-layer interactions in concentrated colloidal systems , 1983 .

[270]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[271]  T. M. Devlin,et al.  Textbook of biochemistry: With clinical correlations , 1982 .

[272]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[273]  D. W. Noid Studies in Molecular Dynamics , 1976 .

[274]  D. Shaw,et al.  Introduction to colloid and surface chemistry , 1970 .

[275]  Charles Tanford,et al.  [84] Examination of titration behavior , 1967 .

[276]  Anna Walsh STUDIES IN MOLECULAR DYNAMICS , 1965 .

[277]  C. Slichter Principles of magnetic resonance , 1963 .