14C release from a Soviet-designed pressurized water reactor nuclear power plant.

The Paks Nuclear Power Plant in Hungary runs with four pressurized water reactors, each of 440-MWe capacity. Sampling systems have been developed and used to determine the 14C of various chemical forms (14CO2, 14CO, 14CnHm) in the airborne releases. The average normalized yearly discharge rates for the time period 1988-1991 are equal to 0.77 TBq GWe-1 y-1 for hydrocarbons and 0.05 TBq GWe-1 y-1 for CO2. The contribution of 14CO was less than 0.5% of the total emission. The 14C discharge rate is estimated to be four times higher than the corresponding mean data of Western European pressurized water reactors. The calculated effective dose equivalent to individuals living in the vicinity of the power plant, due to 14C release, was 0.64 microSv in 1991 while the effective dose equivalent due to the natural 14C level was 15 microSv y-1. The long-term global impact of the 14C release in the operational period of the plant (1982-1991) was 1,270 man-Sv. The 14C excess in the environmental air has been measured since 1989 by taking biweekly samples at a distance of 1.7 km from the nuclear power plant. The long-term average of radiocarbon excess coming from the power plant was 2 mBq m-3. The local 14C deposition was followed by tree ring analysis, too. No 14C increase higher than the uncertainty of the measurement (four per thousand = 0.17 mBq m-3) was observed.