An imperative to monitor Earth's energy imbalance

The current Earth's energy imbalance (EEI) is mostly caused by human activity, and is driving global warming. The absolute value of EEI represents the most fundamental metric defining the status of global climate change, and will be more useful than using global surface temperature. EEI can best be estimated from changes in ocean heat content, complemented by radiation measurements from space. Sustained observations from the Argo array of autonomous profiling floats and further development of the ocean observing system to sample the deep ocean, marginal seas and sea ice regions are crucial to refining future estimates of EEI. Combining multiple measurements in an optimal way holds considerable promise for estimating EEI and thus assessing the status of global climate change, improving climate syntheses and models, and testing the effectiveness of mitigation actions. Progress can be achieved with a concerted international effort.

[1]  C. Kobayashi,et al.  The JRA-55 Reanalysis: General Specifications and Basic Characteristics , 2015 .

[2]  Gary T. Mitchum,et al.  Estimating Mean Sea Level Change from the TOPEX and Jason Altimeter Missions , 2010 .

[3]  D. F. Young,et al.  Geostationary Enhanced Temporal Interpolation for CERES Flux Products , 2013 .

[4]  Jerald W. Harder,et al.  An influence of solar spectral variations on radiative forcing of climate , 2010, Nature.

[5]  N. Loeb,et al.  Surface Irradiances Consistent With CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances , 2013 .

[6]  L. Lee,et al.  Uncertainty in the magnitude of aerosol‐cloud radiative forcing over recent decades , 2014 .

[7]  J. Carton,et al.  Global Decadal Upper-Ocean Heat Content as Viewed in Nine Analyses , 2008 .

[8]  K. Trenberth,et al.  Accuracy of Atmospheric Energy Budgets from Analyses , 2002 .

[9]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[10]  C. Katsman,et al.  Tracing the upper ocean's “missing heat” , 2011 .

[11]  David R. Doelling,et al.  Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty , 2012 .

[12]  A. Cazenave,et al.  The Sea Level Budget Since 2003: Inference on the Deep Ocean Heat Content , 2015, Surveys in Geophysics.

[13]  Yu Kosaka,et al.  Recent global-warming hiatus tied to equatorial Pacific surface cooling , 2013, Nature.

[14]  Elizabeth C. Kent,et al.  ICOADS Release 2.5: extensions and enhancements to the surface marine meteorological archive , 2011 .

[15]  Michael G. Bosilovich,et al.  Global Energy and Water Budgets in MERRA , 2011 .

[16]  K. Koltermann,et al.  How much is the ocean really warming? , 2007 .

[17]  Norman G. Loeb,et al.  Improving estimates of Earth's energy imbalance , 2016 .

[18]  Kevin E. Trenberth,et al.  Earth’s Energy Imbalance , 2014 .

[19]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[20]  Kevin E. Trenberth,et al.  Climate variability and relationships between top‐of‐atmosphere radiation and temperatures on Earth , 2015 .

[21]  Dean Roemmich,et al.  Unabated planetary warming and its ocean structure since 2006 , 2015 .

[22]  D. Chambers,et al.  Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications , 2013 .

[23]  S. Levitus,et al.  World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 , 2012 .

[24]  M. Balmaseda,et al.  Evaluation of the ECMWF ocean reanalysis system ORAS4 , 2013 .

[25]  Jiang Zhu,et al.  Artifacts in variations of ocean heat content induced by the observation system changes , 2014 .

[26]  Full‐depth temperature trends in the northeastern Atlantic through the early 21st century , 2014 .

[27]  David R. Doelling,et al.  Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part II: Validation , 2005 .

[28]  D. Jackson,et al.  An Improved Near-Surface Specific Humidity and Air Temperature Climatology for the SSM/I Satellite Period , 2015 .

[29]  Eric Rignot,et al.  Revisiting the Earth's sea-level and energy budgets from 1961 to 2008 , 2011 .

[30]  G. Meehl,et al.  Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation , 2013 .

[31]  Richard P Allan,et al.  Changes in global net radiative imbalance 1985–2012 , 2014, Geophysical research letters.

[32]  John Abraham,et al.  A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change , 2013, Reviews of Geophysics.

[33]  S. Seneviratne,et al.  The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models , 2015, Climate Dynamics.

[34]  D. Chambers,et al.  Consistency of the current global ocean observing systems from an Argo perspective , 2014 .

[35]  Nick Rayner,et al.  EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates , 2013 .

[36]  Kevin E. Trenberth,et al.  Distinctive climate signals in reanalysis of global ocean heat content , 2013 .

[37]  K. Schuckmann,et al.  How well can we derive Global Ocean Indicators from Argo data , 2011 .

[38]  Agus Santoso,et al.  Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus , 2014 .

[39]  Shigeki Hosoda,et al.  Improved description of global mixed-layer depth using Argo profiling floats , 2010 .

[40]  David R. Doelling,et al.  Advances in Understanding Top-of-Atmosphere Radiation Variability from Satellite Observations , 2012, Surveys in Geophysics.

[41]  John Gould,et al.  Ocean Circulation and Climate: a 21st Century perspective. 2nd Ed. , 2013 .

[42]  Matt A. King,et al.  Unabated global mean sea-level rise over the satellite altimeter era , 2015 .

[43]  Sergei Rudenko,et al.  Improved Sea Level record over the satellite altimetry era (1993-2010) from the Climate Change Initiative project , 2015 .

[44]  K. Trenberth,et al.  Seamless Poleward Atmospheric Energy Transports and Implications for the Hadley Circulation , 2003 .

[45]  Adam A. Scaife,et al.  Earth's energy imbalance since 1960 in observations and CMIP5 models , 2015, Geophysical research letters.

[46]  J. Willis,et al.  Deep-ocean contribution to sea level and energy budget not detectable over the past decade , 2014 .

[47]  Dean Roemmich,et al.  The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program , 2009 .

[48]  N. Loeb,et al.  CERES Synoptic Product: Methodology and Validation of Surface Radiant Flux , 2015 .

[49]  Makiko Sato,et al.  Earth's energy imbalance and implications , 2011, 1105.1140.

[50]  J. Gregory,et al.  Ocean Heat Uptake Processes: A Model Intercomparison , 2015 .

[51]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[52]  D. Stammer,et al.  Decadal Sea Level Changes in the 50-Year GECCO Ocean Synthesis , 2008 .

[53]  L. Haimberger,et al.  Poleward Atmospheric Energy Transports and Their Variability as Evaluated from ECMWF Reanalysis Data , 2012 .

[54]  Arun Kumar,et al.  An assessment of air–sea heat fluxes from ocean and coupled reanalyses , 2017, Climate Dynamics.

[55]  Kevin E. Trenberth,et al.  Tracking Earth's Energy , 2010, Science.

[56]  K. Trenberth,et al.  The flow of energy through the earth's climate system , 2004 .

[57]  S. Gulev,et al.  Exchanges Through the Ocean Surface , 2013 .

[58]  M. Chin,et al.  Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations , 2012 .

[59]  Gregory C. Johnson,et al.  Robust warming of the global upper ocean , 2010, Nature.

[60]  D. Chambers,et al.  Monitoring ocean heat content from the current generation of global ocean observing systems , 2013 .

[61]  Bruce A. Wielicki,et al.  Defining Top-of-the-Atmosphere Flux Reference Level for Earth Radiation Budget Studies , 2002 .

[62]  Byron D. Tapley,et al.  Contribution of ice sheet and mountain glacier melt to recent sea level rise , 2013 .

[63]  Kevin E. Trenberth,et al.  Regional Energy and Water Cycles: Transports from Ocean to Land , 2013 .

[64]  Carl A. Mears,et al.  Volcanic contribution to decadal changes in tropospheric temperature , 2014 .

[65]  G. Kopp,et al.  A new, lower value of total solar irradiance: Evidence and climate significance , 2011 .

[66]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[67]  Kevin E. Trenberth,et al.  Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses , 2011 .

[68]  Tong Lee,et al.  The Ocean Reanalyses Intercomparison Project (ORA-IP) , 2015 .

[69]  G. Villarini,et al.  The changing nature of flooding across the central United States , 2015 .

[70]  D. McNeall,et al.  Importance of the deep ocean for estimating decadal changes in Earth's radiation balance , 2011 .

[71]  Kevin E. Trenberth,et al.  Covariability of Components of Poleward Atmospheric Energy Transports on Seasonal and Interannual Timescales , 2003 .

[72]  A. Cazenave,et al.  Sea level budget over 2005–2013: missing contributions and data errors , 2015 .

[73]  P. Minnis,et al.  Radiative Climate Forcing by the Mount Pinatubo Eruption , 1993, Science.

[74]  Matthew D. Palmer,et al.  Internal variability of Earth’s energy budget simulated by CMIP5 climate models , 2014 .

[75]  Gregory C. Johnson,et al.  Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets* , 2010 .

[76]  Kevin E. Trenberth,et al.  An apparent hiatus in global warming? , 2013 .

[77]  W. Landman Climate change 2007: the physical science basis , 2010 .