Sliced Message Passing: High Throughput Overlapped Decoding of High-Rate Low-Density Parity-Check Codes

The efficient implementation of high-rate high-throughout low-density parity-check (LDPC) code decoding presents challenges to both fully parallel decoding and memory-sharing partially parallel decoding schemes. In this paper, a new decoding scheme, sliced message passing (SMP), is introduced. The key idea is to slice the total set of N variable-to-check messages into equal-sized p chunks, then to perform check-node computation sequentially chunk by chunk. This new decoding scheme can break the sequential tie between the check- and variable-node update stages and thus greatly improve the throughput. The hardware architectures of SMP decoding are introduced. Each check-node processing unit of the proposed register-based architecture has only c/p inputs instead of c inputs. By remapping the variable-node and check-node processing unit decoding blocks, the optimized SMP decoding units can reduce the overall hardware cost, shorten the critical-path delay, and improve the hardware-usage efficiency. An optimized SMP decoder has been further implemented for a 2048-bit (6, 32) LDPC decoder of the emerging IEEE 10 GBase-T standard in an IBM CMOS 90-nm process. Implementation results from synthesis and post layout simulation have shown the effectiveness of the proposed SMP scheme.

[1]  Jin Xie,et al.  Decoding Behavior Study of LDPC Codes Under a Realistic Magnetic Recording Channel Model , 2006, IEEE Transactions on Magnetics.

[2]  Frank R. Kschischang,et al.  Multi-Gbit/sec low density parity check decoders with reduced interconnect complexity , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[3]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[4]  Keshab K. Parhi,et al.  Overlapped message passing for quasi-cyclic low-density parity check codes , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Guido Masera,et al.  Implementation of a Flexible LDPC Decoder , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[6]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[7]  A. J. Blanksby,et al.  A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder , 2001, IEEE J. Solid State Circuits.

[8]  David J. C. MacKay,et al.  Good Codes Based on Very Sparse Matrices , 1995, IMACC.

[9]  Luca Fanucci,et al.  High-Throughput Multi-Rate Decoding of Structured Low-Density Parity-Check Codes , 2005, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[10]  Vincent C. Gaudet,et al.  Degree-Matched Check Node Decoding for Regular and Irregular LDPCs , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  Zhongfeng Wang,et al.  Low complexity, high speed decoder architecture for quasi-cyclic LDPC codes , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[12]  Keshab K. Parhi,et al.  VLSI implementation-oriented (3, k)-regular low-density parity-check codes , 2001, 2001 IEEE Workshop on Signal Processing Systems. SiPS 2001. Design and Implementation (Cat. No.01TH8578).

[13]  Noga Alon,et al.  A linear time erasure-resilient code with nearly optimal recovery , 1996, IEEE Trans. Inf. Theory.

[14]  Mohammad M. Mansour,et al.  A 640-Mb/s 2048-bit programmable LDPC decoder chip , 2006, IEEE Journal of Solid-State Circuits.

[15]  Shu Lin,et al.  A class of low-density parity-check codes constructed based on Reed-Solomon codes with two information symbols , 2003, IEEE Communications Letters.

[16]  R. M. Tanner,et al.  A Class of Group-Structured LDPC Codes , 2001 .

[17]  Ajay Dholakia,et al.  Efficient implementations of the sum-product algorithm for decoding LDPC codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[18]  Gwan S. Choi,et al.  Low-density parity-check decoder architecture for high throughput optical fiber channels , 2003, Proceedings 21st International Conference on Computer Design.

[19]  A. Blanksby,et al.  A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder , 2001, IEEE J. Solid State Circuits.

[20]  Jinghu Chen,et al.  Near optimum universal belief propagation based decoding of low-density parity check codes , 2002, IEEE Trans. Commun..

[21]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[22]  Tinoosh Mohsenin,et al.  High-Throughput LDPC Decoders Using A Multiple Split-Row Method , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[23]  Naresh R. Shanbhag,et al.  High-throughput LDPC decoders , 2003, IEEE Trans. Very Large Scale Integr. Syst..

[24]  Naresh R. Shanbhag,et al.  Low-power VLSI decoder architectures for LDPC codes , 2002, ISLPED '02.

[25]  M. E. O'Sullivan,et al.  Algebraic construction of sparse matrices with large girth , 2006, IEEE Transactions on Information Theory.

[26]  Lei Yang,et al.  Code construction and FPGA implementation of a low-error-floor multi-rate low-density Parity-check code decoder , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  Tong Zhang,et al.  VLSI Design of High-Rate Quasi-Cyclic LDPC Codes for Magnetic Recording Channel , 2006, IEEE Custom Integrated Circuits Conference 2006.

[28]  Anthony D. Fagan,et al.  A Versatile Variable Rate LDPC Codec Architecture , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Keshab K. Parhi,et al.  Area efficient decoding of quasi-cyclic low density parity check codes , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[30]  Frank R. Kschischang,et al.  Block-Interlaced LDPC Decoders With Reduced Interconnect Complexity , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[31]  Hsie-Chia Chang,et al.  A 3.33Gb/s (1200,720) low-density parity check code decoder , 2005, Proceedings of the 31st European Solid-State Circuits Conference, 2005. ESSCIRC 2005..

[32]  In-Cheol Park,et al.  Loosely coupled memory-based decoding architecture for low density parity check codes , 2006, IEEE Trans. Circuits Syst. I Regul. Pap..