13 – Characterization of Compound Semiconductor Material by Ion Beams

[1]  J. Hovis,et al.  Surface analysis by photoionization at very high laser intensities , 1994 .

[2]  S. Downey,et al.  Sputtering effects in Si, SiO2 and the Si/SiO2 interface , 1993 .

[3]  J. L. Moore,et al.  Application of sample rotation to secondary ion mass spectrometry depth profiling of aluminum metallization , 1992 .

[4]  R. Kopf,et al.  Sputtering processes in AlxGa1−xAs and the effects on post-ionization detection , 1992 .

[5]  M. Dowsett,et al.  Secondary ion mass spectrometry depth profiling of boron, antimony, and germanium deltas in silicon and implications for profile deconvolution , 1992 .

[6]  P. Koidl,et al.  Raman depth profiling by in situ sputtering , 1991 .

[7]  S. Downey,et al.  Quantitative depth profiling resonance ionization mass spectrometry of semiconductors with minimum standardization , 1991 .

[8]  R. Kopf,et al.  Depth profiling resonance ionization mass spectrometry of Be‐doped, layered III–V compound semiconductors , 1990 .

[9]  T. Hasenberg,et al.  High resolution secondary ion mass spectrometry depth profiling using continuous sample rotation and its application to superlattice and delta‐doped sample analysis , 1990 .

[10]  R. Kopf,et al.  Secondary‐ion mass spectrometry on δ‐doped GaAs grown by molecular beam epitaxy , 1990 .

[11]  J. Berg,et al.  Theoretical and experimental studies of the broadening of dilute delta‐doped Si spikes in GaAs during SIMS depth profiling , 1990 .

[12]  T. Ambrose,et al.  Analysis of MBE grown AI(x)Ga(1-x)As-GaAs heteroepitaxial layers by rutherford backscattering , 1990 .

[13]  R. Kopf,et al.  Beryllium δ doping of GaAs grown by molecular beam epitaxy , 1990 .

[14]  R. Jede,et al.  Progress in solids analysis by sputtered neutral mass spectrometry , 1990 .

[15]  M. Salvi,et al.  Oxygen complexes in III‐V compounds as determined by secondary‐ion mass spectrometry under cesium bombardment , 1989 .

[16]  Y. Homma,et al.  Effect of matrix composition and impact angle on the fractional ion yield of Be+ sputtered from oxygen‐bombarded silicon and compound semiconductors , 1989 .

[17]  M. Meuris,et al.  Mass and energy dependence of depth resolution in secondary‐ion mass spectrometry experiments with iodine, oxygen, and cesium beams on AlGaAs/GaAs multilayer structures , 1989 .

[18]  D. M. Hrubowchak,et al.  Atom Counting at Surfaces , 1989, Science.

[19]  A. Galuska,et al.  SIMS matrix effects in Alx Ga1 – xAs: Influence of instrumental parameters , 1989 .

[20]  J. Stark,et al.  Spatial localization of impurities in δ‐doped GaAs , 1988 .

[21]  J. P. Gowers,et al.  Beryllium diffusion across GaAs/(Al, Ga)As heterojunctions and GaAs/AlAs superlattices during MBE growth , 1987 .

[22]  M. Py,et al.  Secondary ion mass spectrometry study of oxygen accumulation at GaAs/AlGaAs interfaces grown by molecular beam epitaxy , 1987 .

[23]  A. Zalar Auger electron spectroscopy depth profiling during sample rotation , 1986 .

[24]  K. Gillen,et al.  Surface analysis of contaminated GaAs: Comparison of new laser‐based techniques with SIMS , 1985 .

[25]  G. Morrison,et al.  Point-by-point matrix effect calibration for the quantitative analysis of superlattices by secondary ion mass spectrometry , 1984 .

[26]  G. Morrison,et al.  Matrix calibration for the quantitative analysis of layered semiconductors by secondary ion mass spectrometry , 1983 .

[27]  D. Bimberg,et al.  Matrix effect and surface oxidation in depth profiling of AlxGa1−xAs by secondary ion mass spectrometry using O+2 primary ions , 1983 .