Three-Dimensional Aerodynamic Computations on Unstructured Grids Using a Newton-Krylov Approach

Abstract A Newton–Krylov algorithm is presented for the compressible Navier–Stokes equations in three dimensions on unstructured grids. The algorithm uses a preconditioned matrix-free Krylov method to solve the linear system that arises in the Newton iterations. Incomplete factorization is used as the preconditioner, based on an approximate Jacobian matrix after the reverse Cuthill–McKee reordering of the unknowns. Several approximate viscous operators that involve only the nearest neighboring terms are studied to reduce the cost of preconditioning. The performance of the algorithm is demonstrated through numerical studies of the ONERA M6 wing and the DLR-F6 wing-body configuration. A ten-order-of-magnitude residual reduction for the wing and wing-body configurations can be obtained with a computing cost equivalent to 5500 and 8000 function evaluations, respectively, on grids with a half million nodes.

[1]  O. Brodersen,et al.  Drag Prediction of Engine -Airframe Interference Effects Using Unstructured Navier -Stokes Calculations , 2001 .

[2]  James J. McGuirk,et al.  Finite Volume Discretization Aspects for Viscous Flows on Mixed Unstructured Grids , 1999 .

[3]  Dimitri J. Mavriplis,et al.  Transonic Drag Prediction on a DLR-F6 Transport Configuration Using Unstructured Grid Solvers , 2004 .

[4]  P. Forsyth,et al.  Nonlinear iteration methods for high speed laminar compressible Navier-Stokes equations , 1997 .

[5]  D. Gaitonde,et al.  Behavior of linear reconstruction techniques on unstructured meshes , 1995 .

[6]  F. Meers,et al.  Multilevel Newton-Krylov algorithms for computing compressible flows on unstructured meshes , 1999 .

[7]  David W. Zingg,et al.  A Runge-Kutta-Newton-Krylov Algorithm for Fourth-Order Implicit Time Marching Applied to Unsteady Flows , 2004 .

[8]  David W. Zingg,et al.  Fifty Years of Aerodynamics: Successes, Challenges, and Opportunities , 2004 .

[9]  T. Pulliam Efficient solution methods for the Navier-Stokes equations , 1986 .

[10]  Georg May,et al.  Drag prediction of the DLR-F6 configuration , 2004 .

[11]  P. Roache Fundamentals of computational fluid dynamics , 1998 .

[12]  Dimitri J. Mavriplis,et al.  Transonic drag prediction using an unstructured multigrid solver , 2002 .

[13]  John N. Shadid,et al.  Comparison of Operators for Newton-Krylov Method for Solving Compressible Flows on Unstructured Meshes , 2004 .

[14]  Dimitri J. Mavriplis,et al.  On Convergence Acceleration Techniques for Unstructured Meshes , 1998 .

[15]  David W. Zingg,et al.  Start-up Issues in a Newton-Krylov Algorithm for Turbulent Aerodynamic Flows , 2003 .

[16]  David E. Keyes,et al.  Application of Newton-Krylov methodology to a three-dimensional unstructured Euler code , 1995 .

[17]  David W. Zingg,et al.  A Newton-Krylov Algorithm for Turbulent Aerodynamic Flows , 2003 .

[18]  V. Venkatakrishnan,et al.  A UNIFIED MULTIGRID SOLVER FOR THE NAVIER-STOKES EQUATIONS ON MIXED ELEMENT MESHES , 1995 .

[19]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[20]  Ch. Hirsch,et al.  Fundamentals Of Computational Fluid Dynamics , 2016 .

[21]  W. K. Anderson,et al.  Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids , 1995 .

[22]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[23]  B. V. Leer,et al.  Experiments with implicit upwind methods for the Euler equations , 1985 .

[24]  Philippe Geuzaine,et al.  Newton-Krylov Strategy for Compressible Turbulent Flows on Unstructured Meshes , 2001 .

[25]  D. Holmes,et al.  Solution of the 2D Navier-Stokes equations on unstructured adaptive grids , 1989 .

[26]  D. Zingg,et al.  Newton-Krylov Algorithm for Aerodynamic Design Using the Navier-Stokes Equations , 2002 .

[27]  Gregory Allan Ashford,et al.  An unstructured grid generation and adaptive solution technique for high Reynolds number compressible flows. , 1996 .

[28]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[29]  G. Golub,et al.  Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .

[30]  David W. Zingg,et al.  Efficient Newton-Krylov Solver for Aerodynamic Computations , 1998 .

[31]  A. Jameson,et al.  Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh , 1985 .

[32]  Forrester T. Johnson,et al.  THIRTY YEARS OF DEVELOPMENT AND APPLICATION OF CFD AT BOEING COMMERCIAL AIRPLANES, SEATTLE , 2005 .

[33]  D. Zingg,et al.  A Newton-Krylov Algorithm for the Euler Equations Using Unstructured Grids , 2003 .

[34]  T. Barth,et al.  An unstructured mesh Newton solver for compressible fluid flow and its parallel implementation , 1995 .

[35]  V. Schmitt,et al.  Pressure distributions on the ONERA M6 wing at transonic Mach numbers , 1979 .

[36]  Dimitri J. Mavriplis,et al.  Grid Resolution Study of a Drag Prediction Workshop Configuration Using the NSU3D Unstructured Mesh Solver , 2005 .

[37]  R. C. Swanson,et al.  On Central-Difference and Upwind Schemes , 1992 .

[38]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[39]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[40]  Rainald Löhner,et al.  High-Reynolds number viscous flow computations using an unstructured-grid method , 2005 .

[41]  W. Coirier An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ. , 1994 .

[42]  D. Zingg,et al.  Fast Newton-Krylov method for unstructured grids , 1998 .

[43]  V. N. Venkatakrishnan,et al.  Implicit Solvers for Unstructured Meshes , 1993 .