Link between Lesser Himalayan Neoproterozoic Krol Succession and the Adelaide Rift Complex of Australia ‒ Evidence from the Silty Mudstone Deposits of Krol Succession, Himachal Pradesh, India

[1]  K. Das,et al.  Krol Sandstone-Black Shale Association of the Lesser Himalayan Neoproterozoic Succession, Himachal Pradesh, India: An Unexplored Record of the Hothouse Aftermath , 2022, SSRN Electronic Journal.

[2]  K. Das,et al.  Neoproterozoic Blaini Formation of Lesser Himalaya, India: Fiction and Fact , 2020 .

[3]  S. Planke,et al.  Meltwater sediment transport as the dominating process in mid-latitude trough mouth fan formation , 2020, Nature Communications.

[4]  Shuangbiao Han,et al.  Elemental Geochemical Characterization of Sedimentary Conditions and Organic Matter Enrichment for Lower Cambrian Shale Formations in Northern Guizhou, South China , 2020 .

[5]  A. Hussain,et al.  High‐resolution X‐ray fluorescence profiling of hybrid event beds: Implications for sediment gravity flow behaviour and deposit structure , 2020, Sedimentology.

[6]  Shuai Han,et al.  An Automated Method to Generate and Evaluate Geochemical Tectonic Discrimination Diagrams Based on Topological Theory , 2020 .

[7]  R. Tinterri,et al.  Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes. Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France) , 2016 .

[8]  A. Olatunji,et al.  Determination of Provenance and Tectonic Settings of Niger Delta Clastic Facies Using Well-Y, Onshore Delta State, Nigeria , 2014 .

[9]  J. Schieber Mud re-distribution in epicontinental basins – Exploring likely processes , 2014 .

[10]  J. Schieber,et al.  Muddy Prodeltaic Hyperpycnites In the Lower Genesee Group of Central New York, USA: Implications For Mud Transport In Epicontinental Seas , 2014 .

[11]  Esther J. Sumner,et al.  Subaqueous sediment density flows: Depositional processes and deposit types , 2012 .

[12]  I. Kane,et al.  Submarine transitional flow deposits in the Paleogene Gulf of Mexico , 2012 .

[13]  D. Mukhopadhyay,et al.  Structural evolution of the frontal fold–thrust belt, NW Himalayas from sequential restoration of balanced cross-sections and its hydrocarbon potential , 2012 .

[14]  G. Retallack Neoproterozoic loess and limits to snowball Earth , 2011, Journal of the Geological Society.

[15]  J. Macquaker,et al.  Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions , 2010 .

[16]  M. Malik,et al.  Redefining Medlicott–Wadia's main boundary fault from Jhelum to Yamuna: An active fault strand of the main boundary thrust in northwest Himalaya , 2010 .

[17]  P. Haughton,et al.  Hybrid sediment gravity flow deposits – Classification, origin and significance , 2009 .

[18]  G. Postma,et al.  Structureless, coarse-tail graded Bouma Ta formed by internal hydraulic jump of the turbidity current? , 2009 .

[19]  J. Bhattacharya,et al.  Hyperpycnal Rivers and Prodeltaic Shelves in the Cretaceous Seaway of North America , 2009 .

[20]  D. Bernoulli,et al.  Turbidites and turbidity currents from Alpine ‘flysch’ to the exploration of continental margins , 2009 .

[21]  V. Gostin,et al.  The Elatina glaciation, late Cryogenian (Marinoan Epoch), South Australia: Sedimentary facies and palaeoenvironments , 2008 .

[22]  K. Karlstrom,et al.  Assembly, configuration, and break-up history of Rodinia: A synthesis , 2008 .

[23]  John B. Southard,et al.  Experiments on Oscillatory-Flow and Combined-Flow Bed Forms: Implications for Interpreting Parts of the Shallow-Marine Sedimentary Record , 2005 .

[24]  J. Meert,et al.  The making and unmaking of a supercontinent: Rodinia revisited , 2003 .

[25]  N. Christie‐Blick,et al.  Carbonate platform growth and cyclicity at a terminal Proterozoic passive margin, Infra Krol Formation and Krol Group, Lesser Himalaya, India , 2003 .

[26]  P. Dasgupta Sediment gravity flow—the conceptual problems , 2003 .

[27]  M. Drago,et al.  Modelling subaqueous bipartite sediment gravity flows on the basis of outcrop constraints: first results , 2003 .

[28]  Jeffrey G. Marr,et al.  Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments , 2003 .

[29]  A. J. Kaufman,et al.  Sequence Stratigraphy of the Neoproterozoic Infra Krol Formation and Krol Group, Lesser Himalaya, India , 2002 .

[30]  Jeffrey G. Marr,et al.  Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures , 2001 .

[31]  Y. Sohn,et al.  Debris Flow and Hyperconcentrated Flood‐Flow Deposits in an Alluvial Fan, Northwestern Part of the Cretaceous Yongdong Basin, Central Korea , 1999, The Journal of Geology.

[32]  G. Williams Late Neoproterozoic periglacial aeolian sand sheet, Stuart Shelf, South Australia , 1998 .

[33]  Y. Sohn On traction-carpet sedimentation , 1997 .

[34]  M. Quinby-Hunt,et al.  The provenance of low-calcic black shales , 1991 .

[35]  W. Nemec,et al.  Large floating clasts in turbidites: a mechanism for their emplacement , 1988 .

[36]  K. Crook,et al.  Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins , 1986 .

[37]  S. Taylor,et al.  Geochemical evolution of Archean shales from South Africa. I. The Swaziland and Pongola Supergroups , 1983 .

[38]  R. V. Fisher Flow transformations in sediment gravity flows , 1983 .

[39]  D. Lowe Sediment Gravity Flows: II Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents , 1982 .

[40]  G. Shanmugam,et al.  Tectonic significance of distal turbidites in the Middle Ordovician Blockhouse and lower Sevier formations in East Tennessee , 1978 .

[41]  J. R. Allen Mixing at Turbidity Current Heads, and Its Geological Implications , 1971 .

[42]  G. Middleton EXPERIMENTS ON DENSITY AND TURBIDITY CURRENTS: III. DEPOSITION OF SEDIMENT , 1967 .

[43]  G. Middleton EXPERIMENTS ON DENSITY AND TURBIDITY CURRENTS: II. UNIFORM FLOW OF DENSITY CURRENTS , 1966 .

[44]  Gerard V. Middleton,et al.  Experiments on density and turbidity currents, I.Motion of the head , 1966 .

[45]  P. Kuenen,et al.  Turbidity Currents as a Cause of Graded Bedding , 1950, The Journal of Geology.

[46]  A. Civa,et al.  Turbidites and turbidity currents , 2020 .

[47]  J. Macquaker,et al.  Mudstone Primer: Lithofacies variations, diagnostic criteria, and sedimentologic–stratigraphic implications at lamina to bedset scale , 2015 .

[48]  Zheng‐Xiang Li,et al.  Late Neoproterozoic 40° intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia , 2011 .

[49]  John B. Southard,et al.  Lenticular Shale Fabrics Resulting from Intermittent Erosion of Water-Rich Muds—Interpreting the Rock Record in the Light of Recent Flume Experiments , 2010 .

[50]  G. Shanmugam Chapter 5 Deep-water Bottom Currents and their Deposits , 2008 .

[51]  L. Fava,et al.  An Introduction to the Analysis of Ancient Turbidite Basins from an Outcrop Perspective , 1999 .

[52]  I. Dalziel OVERVIEW: Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation , 1997 .

[53]  J. E. Sanders Primary Sedimentary Structures Formed by Turbidity Currents and Related Resedimentation Mechanisms , 1960 .