Optimal properties of the uniform algebraic trigonometric B-splines

In this paper, we construct a matrix, which transforms a generalized C-Bezier basis into a generalized uniform algebraic-trigonometric B-spline (C-B-spline or UAT B-spline) basis. We also show that it is a totally positive matrix and give a normalized B-basis of the generalized UAT B-splines.

[1]  Juan Manuel Peña,et al.  Totally positive bases for shape preserving curve design and optimality of B-splines , 1994, Comput. Aided Geom. Des..

[2]  Allan Pinkus,et al.  The Approximation of a Totally Positive Band Matrix by a Strictly Banded Totally Positive One , 1982 .

[3]  Jiwen Zhang,et al.  Two different forms of C-B-splines , 1997, Comput. Aided Geom. Des..

[4]  Guozhao Wang,et al.  Uniform trigonometric polynomial B-spline curves , 2002, Science in China Series F Information Sciences.

[5]  Juan Manuel Peña,et al.  Shape preserving alternatives to the rational Bézier model , 2001, Comput. Aided Geom. Des..

[6]  Guozhao Wang,et al.  NUAT B-spline curves , 2004, Comput. Aided Geom. Des..

[7]  Juan Manuel Peña,et al.  Corner cutting algorithms associated with optimal shape preserving representations , 1999, Comput. Aided Geom. Des..

[8]  Juan Manuel Peña,et al.  Quadratic-Cycloidal Curves , 2004, Adv. Comput. Math..

[9]  Jiwen Zhang C-curves: an extension of cubic curves , 1996 .

[10]  Guozhao Wang,et al.  A class of Bézier-like curves , 2003, Comput. Aided Geom. Des..

[11]  Juan Manuel Peña,et al.  A basis of C-Bézier splines with optimal properties , 2002, Comput. Aided Geom. Des..