Natural products as an inspiration in the diversity-oriented synthesis of bioactive compound libraries

This review describes how the structures of natural products have provided an insipration for new synthetic methodology which yields libraries of diverse bioactive compounds.

[1]  B. E. Evans,et al.  Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. , 1988, Journal of Medicinal Chemistry.

[2]  E. González-Zamora,et al.  Multicomponent domino process to oxa-bridged polyheterocycles and pyrrolopyridines, structural diversity derived from work-up procedure , 2002 .

[3]  Andreas Bender,et al.  Diversity-oriented synthesis; a spectrum of approaches and results. , 2008, Organic & biomolecular chemistry.

[4]  S. Haggarty,et al.  Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. , 1999, Science.

[5]  Richard J. K. Taylor,et al.  Cascade reactions of 1,2,4-triazines: direct thermochemical access to functionalized 4,5-dihydroazocines , 2004 .

[6]  K. Nicolaou,et al.  Natural Product-like Combinatorial Libraries Based on Privileged Structures. 2. Construction of a 10 000-Membered Benzopyran Library by Directed Split-and-Pool Chemistry Using NanoKans and Optical Encoding , 2000 .

[7]  Richard J. K. Taylor,et al.  Tandem inverse electron demand Diels–Alder, retro-Diels–Alder and intramolecular Diels–Alder sequences: one-pot synthesis of diaza-polycycles , 2007 .

[8]  David R Spring,et al.  Chemical genetics to chemical genomics: small molecules offer big insights. , 2005, Chemical Society reviews.

[9]  Zhen Yang,et al.  A concise and diversity-oriented strategy for the synthesis of benzofurans and indoles via Ugi and Diels-Alder reactions. , 2005, Journal of combinatorial chemistry.

[10]  Timothy J Mitchison,et al.  Dissecting Temporal and Spatial Control of Cytokinesis with a Myosin II Inhibitor , 2003, Science.

[11]  C. Cericola,et al.  Characterization of Chemical Inhibitors of Brefeldin A-activated Mono-ADP-ribosylation* , 1997, The Journal of Biological Chemistry.

[12]  Stuart L Schreiber,et al.  Diversity-oriented synthesis of biaryl-containing medium rings using a one bead/one stock solution platform. , 2002, Journal of the American Chemical Society.

[13]  Derek S. Tan,et al.  Diversity-oriented synthesis: exploring the intersections between chemistry and biology , 2005, Nature chemical biology.

[14]  Shiying Shang,et al.  A unified synthetic approach to polyketides having both skeletal and stereochemical diversity. , 2007, Organic letters.

[15]  Herbert Waldmann,et al.  Compound library development guided by protein structure similarity clustering and natural product structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[17]  Stuart L Schreiber,et al.  A synthesis strategy yielding skeletally diverse small molecules combinatorially. , 2004, Journal of the American Chemical Society.

[18]  John A. Tallarico,et al.  Small-molecule diversity using a skeletal transformation strategy. , 2005, Organic letters.

[19]  David R. Liu,et al.  Small-molecule diversification from iterated branching reaction pathways enabled by DNA-templated synthesis. , 2005, Angewandte Chemie.

[20]  Richard J. K. Taylor,et al.  Highly substituted pyridines via tethered imine-enamine (TIE) methodology. , 2004, Chemical communications.

[21]  Stuart L Schreiber,et al.  Small molecules: the missing link in the central dogma , 2005, Nature chemical biology.

[22]  S. Schreiber,et al.  Pathway development and pilot library realization in diversity-oriented synthesis: exploring Ferrier and Pauson-Khand reactions on a glycal template. , 2002, Chemistry & biology.

[23]  Stefan Wetzel,et al.  The Scaffold Tree - Visualization of the Scaffold Universe by Hierarchical Scaffold Classification , 2007, J. Chem. Inf. Model..

[24]  Stuart L Schreiber,et al.  Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. , 2003, Journal of the American Chemical Society.

[25]  Derek S. Tan,et al.  Stereocontrolled synthesis of spiroketals via Ti(Oi-Pr)4-mediated kinetic spirocyclization of glycal epoxides with retention of configuration. , 2006, Journal of the American Chemical Society.

[26]  M. Tyers,et al.  Chemical Genetics Hits "Reality" , 2004, Science.

[27]  A. Schuffenhauer,et al.  Charting biologically relevant chemical space: a structural classification of natural products (SCONP). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  H. Wichterle,et al.  Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists , 2002, Journal of biology.

[29]  P. Clemons,et al.  A one-bead, one-stock solution approach to chemical genetics: part 2. , 2001, Chemistry & biology.

[30]  S. Schreiber,et al.  A boronic ester annulation strategy for diversity-oriented organic synthesis. , 2002, Angewandte Chemie.

[31]  S. Schreiber,et al.  Stereochemical control of skeletal diversity. , 2003, Organic letters.

[32]  Suzanne Fergus,et al.  Skeletal diversity construction via a branching synthetic strategy. , 2006, Chemical communications.

[33]  R. Breinbauer Chemical genetics goes (zebra) fishing. , 2003, Angewandte Chemie.

[34]  Elazer R. Edelman,et al.  Adv. Drug Delivery Rev. , 1997 .

[35]  Stuart L Schreiber,et al.  Skeletal diversity via a folding pathway: synthesis of indole alkaloid-like skeletons. , 2005, Organic letters.

[36]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .

[37]  B. Stockwell Chemical genetics: ligand-based discovery of gene function , 2000, Nature Reviews Genetics.

[38]  J. Porco,et al.  An approach to skeletal diversity using functional group pairing of multifunctional scaffolds. , 2007, Organic letters.

[39]  J. Moss,et al.  Interaction of BIG2, a brefeldin A-inhibited guanine nucleotide-exchange protein, with exocyst protein Exo70. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Duduta,et al.  Skeletal diversity through radical cyclization of tetrahydropyridine scaffolds. , 2007, Organic letters.

[41]  Chris Dockendorff,et al.  Applications of multicomponent reactions for the synthesis of diverse heterocyclic scaffolds. , 2007, Organic letters.

[42]  Zhen Yang,et al.  Development of a concise and diversity-oriented approach for the synthesis of plecomacrolides via the diene-ene RCM. , 2006, Organic letters.

[43]  Yi Xing,et al.  Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  David R Spring,et al.  Diversity-oriented synthesis; a challenge for synthetic chemists. , 2003, Organic & biomolecular chemistry.

[45]  S. Schreiber,et al.  Split--pool synthesis of 1,3-dioxanes leading to arrayed stock solutions of single compounds sufficient for multiple phenotypic and protein-binding assays. , 2001, Journal of the American Chemical Society.

[46]  Jeremy R. Duvall,et al.  An oligomer-based approach to skeletal diversity in small-molecule synthesis. , 2006, Journal of the American Chemical Society.

[47]  Stuart L. Schreiber,et al.  Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays , 2002, Nature.

[48]  R. Lavilla,et al.  Straightforward access to a structurally diverse set of oxacyclic scaffolds through a four-component reaction. , 2005, Angewandte Chemie.

[49]  Stuart L Schreiber,et al.  A planning strategy for diversity-oriented synthesis. , 2004, Angewandte Chemie.

[50]  S. Schreiber,et al.  Pairwise use of complexity-generating reactions in diversity-oriented organic synthesis. , 2000, Organic Letters.

[51]  S. Schreiber,et al.  Genomewide studies of histone deacetylase function in yeast. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Duffey,et al.  Diversity-oriented synthesis of polyketide natural products via iterative chemo- and stereoselective functionalization of polyenoates: development of a unified approach for the C(1-19) segments of lituarines A-C. , 2005, Organic letters.

[53]  Y. Feng,et al.  Use of biomimetic diversity-oriented synthesis to discover galanthamine-like molecules with biological properties beyond those of the natural product. , 2001, Journal of the American Chemical Society.

[54]  Leonie Campbell,et al.  A Au(i)-catalyzed N-acyl iminium ion cyclization cascade. , 2007, Journal of the American Chemical Society.

[55]  D. Hall,et al.  A three-component reaction for diversity-oriented synthesis of polysubstituted piperidines: solution and solid-phase optimization of the first tandem aza[4+2]/allylboration. , 2003, Chemistry.

[56]  Richard J. K. Taylor,et al.  Cascade reactions of substituted 1,2,4-triazines: rapid access to nitrogen-containing polycycles. , 2004, Journal of the American Chemical Society.

[57]  Richard J. K. Taylor,et al.  Improved methodologies for the preparation of highly substituted pyridines. , 2005, The Journal of organic chemistry.

[58]  Giovanni Muncipinto,et al.  Short synthesis of skeletally and stereochemically diverse small molecules by coupling petasis condensation reactions to cyclization reactions. , 2006, Angewandte Chemie.

[59]  Peter G. Schultz,et al.  A chemical switch for inhibitor-sensitive alleles of any protein kinase , 2000, Nature.

[60]  Derek S. Tan,et al.  Stereocontrolled synthesis of spiroketals via a remarkable methanol-induced kinetic spirocyclization reaction. , 2005, Journal of the American Chemical Society.

[61]  G. Prencipe,et al.  Chemical variation of natural-product-like scaffolds: design, synthesis, and biological activity of fused bicyclic acetal derivatives. , 2007, Angewandte Chemie.

[62]  John A. Tallarico,et al.  A one-bead, one-stock solution approach to chemical genetics: part 1. , 2001, Chemistry & biology.

[63]  Stuart L Schreiber,et al.  Skeletal diversity via a branched pathway: efficient synthesis of 29 400 discrete, polycyclic compounds and their arraying into stock solutions. , 2002, Journal of the American Chemical Society.

[64]  T. Mayer,et al.  Chemical genetics: tailoring tools for cell biology. , 2003, Trends in cell biology.