Covering pairs by quintuples: The case v congruent to 3 (mod 4)

Let C(v) denote the least number of quintuples of a v-set V with the property that every pair of distinct elements of V occurs in at least one quintuple. Let B(v) = ⌈v⌈(v − 1)/4⌉/5⌉. It is shown that C(15 = B(15) + 1, and that if v congruent to 3 (mod 4), v ⩾ 7 and v ≠ 15, then C(v) = B(v).

[1]  W. H. Mills,et al.  On the Covering of Pairs by Quadruples II , 1973, J. Comb. Theory, Ser. A.

[2]  Richard M. Wilson,et al.  Constructions and Uses of Pairwise Balanced Designs , 1975 .

[3]  Ronald C. Mullin,et al.  Coverings of Pairs by Quintuples , 1987, J. Comb. Theory, Ser. A.

[4]  Richard M. Wilson,et al.  Concerning the number of mutually orthogonal latin squares , 1974, Discret. Math..

[5]  Andries E. Brouwer Mutually orthogonal latin squares , 1978 .

[6]  W. H. Mills On the Covering of Pairs by Quadruples I , 1972, J. Comb. Theory, Ser. A.

[7]  Haim Hanani,et al.  Balanced incomplete block designs and related designs , 1975, Discret. Math..

[8]  Andries E. Brouwer Four mols of order 10 with a hole of order 2 , 1984 .

[9]  A. Rosa,et al.  Tables of Parameters of BIBDs with r⩽41 including Existence, Enumeration, and Resolvability Results , 1985 .

[10]  Alan Hartman,et al.  Covering triples by quadruples: An asymptotic solution , 1986, J. Comb. Theory, Ser. A.

[11]  D. K. Ray-Chaudhuri,et al.  The Existence of Resolvable Block Designs , 1973 .

[12]  R. C. Bose ON THE CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS , 1939 .

[13]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs I. Composition Theorems and Morphisms , 1972, J. Comb. Theory, Ser. A.

[14]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.

[15]  Ronald C. Mullin,et al.  A Generalization of the Singular Direct Product with Applications Skew Room Squares , 1980, J. Comb. Theory, Ser. A.

[16]  Marion Fort,et al.  Minimal coverings of pairs by triples , 1958 .